Euclid's Elements


 

Article Index

Peking Online International Number Theory Seminar (POINTS)


Introduction

This seminar series is sponsored by the Beijing International Center of Mathematical Research (BICMR) and the School of Mathematical Sciences of Peking University (SMS-PKU).

SMS-PKU

BICMR

 

The seminars usually take place on Wednesday evenings (UTC +8), presumably via Zoom. By default, the talks will be given in English. The official announcements of our talks will appear on the websites of BICMR and/or SMS-PKU. The talks will also be announced on researchseminars.org .

The slides or videos, if available, can be found on the page of Past talks.

If you are willing to give a talk, please feel free to contact any one of the organizers below. Their E-mail addresses can be easily found on the websites of BICMR or SMS-PKU.

Organizers

  • Yiwen Ding
  • Wen-Wei Li
  • Ruochuan Liu
  • Zhiyu Tian
  • Liang Xiao
  • Enlin Yang
  • Xinyi Yuan

Upcoming talks

TBA

Speaker: Ariyan Javanpeykar (Johannes Gutenberg-Universität Mainz)

Time: TBA, November 2020 (UTC+8)

Abstract: TBA

 


Past talks (2020)

Doubling integrals for Brylinski-Deligne extensions of classical groups

Speaker: Yuanqing Cai (Kyoto University)

Time: 10:30-11:30 August 26, 2020 (UTC +8)

Abstract: In the 1980s, Piatetski-Shapiro and Rallis discovered a family of Rankin-Selberg integrals for the classical groups that did not rely on Whittaker models. This is the so-called doubling method. It grew out of Rallis' work on the inner products of theta lifts -- the Rallis inner product formula.

Recently, a family of global integrals that represent the tensor product \(L\)-functions for classical groups (joint with Friedberg, Ginzburg, and Kaplan) and the tensor product \(L\)-functions for covers of symplectic groups (Kaplan) was discovered. These can be viewed as generalizations of the doubling method. In this talk, we explain how to develop the doubling integrals for Brylinski-Deligne extensions of all connected classical groups. This gives a family of Eulerian global integrals for this class of non-linear extensions. Slides

Gan-Gross-Prasad conjectures for general linear groups

Speaker: Kei Yuen Chan (Shanghai Center for Mathematical Sciences)

Time: 15:00-16:00 August 13, 2020 (UTC +8)

Abstract: In this talk, I will talk about restriction problems of general linear groups over local and global fields, surrounding Gan-Gross-Prasad conjectures. In particular, I will discuss a local conjecture on predicting the branching laws of the non-tempered representations arisen from Arthur packets and my recent work on a proof of the conjecture. Along the way, I will also discuss some significant properties of restrictions such as multiplicity one, Ext-vanishing, projectivity and indecomposability. Slides

Local models for moduli of global and local shtukas

Speaker: Esmail Arasteh Rad (Universität Münster)

Time: 16:00-17:00 July 22, 2020 (UTC +8)

Abstract: Moduli spaces for global \(G\)-shtukas appear as function fields analogs for Shimura varieties. This can be observed for example through Langlands philosophy. They possess local counterparts which are called Rapoport-Zink spaces for local \(P\)-shtukas which similarly arise as function fields analogs for Rapoport-Zink spaces for \(p\)-divisible groups. In this talk we first recall the construction of these moduli stacks (spaces), and after providing some preliminary backgrounds, we discuss the theory of local models for them. If time permits we also discuss some of the applications. Slides

Examples related to the Sakellaridis-Venkatesh conjecture

Speaker: Xiaolei Wan (National University of Singapore)

Time: 09:00-10:00 July 8, 2020 (UTC +8)

Abstract: In this talk, I will introduce the Sakellaridis-Venkatesh conjecture on the decomposition of global period, and give examples related to this conjecture. More specifically, the cases \( X = \mathrm{SO}(n-1) \backslash \mathrm{SO}(n) \) and \( X = \mathrm{U}(2) \backslash \mathrm{SO}(5) \) . In both cases, I will determine the Plancherel decompositions of \( L^2(X_v) \), where \( v \) is a local place. Then I will prove the local relative character identity. In the global setting, I will give the factorization of the global period of \( X = \mathrm{SO}(n-1) \backslash \mathrm{SO}(n) \) , where the local functional comes from the local Plancherel decomposition. The example \( X = \mathrm{U}(2) \backslash \mathrm{SO}(5) \) is slightly beyond the SV conjecture but we still have a decomposition of the global period as the sum of two factorizable elements. Slides

Arithmetic group cohomology: coefficients and automorphy

Speaker: Jun Su (Cambridge University)

Time: 16:00-17:00 July 1, 2020 (UTC +8)

Abstract: Cohomology of arithmetic subgroups, with coefficients being algebraic representations of the corresponding reductive group, has played an important role in the construction of Langlands correspondence. Traditionally the first step to access these objects is to view them as cohomology of (locally constant) sheaves on locally symmetric spaces and hence connect them with spaces of functions. However, sometimes infinite dimensional coefficients also naturally arise, e.g. when you try to attach elliptic curves to weight 2 eigenforms on \( \mathrm{GL}_2 \) / an imaginary cubic field, and the sheaf theoretic viewpoint might no longer be fruitful. In this talk we’ll explain a different but very simple understanding of the connection between arithmetic group cohomology (with finite dimensional coefficients) and function spaces, and discuss the application of this idea to infinite dimensional coefficients.

Mod p Bernstein centres of p-adic groups

Speaker: Andrea Dotto (University of Chicago)

Time: 09:30-10:30 June 24, 2020 (UTC +8)

Abstract: The centre of the category of smooth mod \(p\) representations of a \(p\)-adic reductive group does not distinguish the blocks of finite length representations, in contrast with Bernstein's theory in characteristic zero. Motivated by this observation and the known connections between the Bernstein centre and the local Langlands correspondence in families, we consider the case of \(\mathrm{GL}_2(\mathbb{Q}_p) \) and we prove that its category of representations extends to a stack on the Zariski site of a simple geometric object: a chain \(X\) of projective lines, whose points are in bijection with Paskunas's blocks. Taking the centre over each open subset we obtain a sheaf of rings on \(X\), and we expect the resulting space to be closely related to the Emerton-Gee stack for 2-dimensional representations of the absolute Galois group of \(\mathbb{Q}_p \). Joint work in progress with Matthew Emerton and Toby Gee.

Prehomogeneous zeta functions and toric periods for inner forms of GL(2)

Speaker: Miyu Suzuki (Kanazawa University)

Time: 15:00-16:00 June 17, 2020 (UTC +8)

Abstract: I will explain a new application of prehomogeneous zeta functions to non-vanishing of periods of automorphic forms. The zeta functions we use were first introduced by F. Sato and a general theory is developed by the recent work of Wen-Wei Li. They can be used to show non-vanishing of infinitely many toric periods of cuspidal representations of inner forms of \( \mathrm{GL}(2) \). If time permits, I will mention future works based on the local theory of Wen-Wei Li. This is a joint work with Satoshi Wakatsuki. Slides

p-adic family of modular forms on GSpin Shimura varieties

Speaker: Xiaoyu Zhang (Universität Duisburg-Essen)

Time: 18:00-19:00 June 10, 2020 (UTC +8)

Abstract: The theory of \(p\)-adic interpolation of modular forms on the upper half plane started with Serre for Eisenstein series and then was developed by Hida for ordinary cuspidal modular forms. This theory plays an important role in the construction of \(p\)-adic \(L\)-functions, modularity theorems, etc. In this talk, I will generalize this theory to modular forms on \(\mathrm{GSpin}\) Shimura varieties. In such cases, the ordinary locus may be empty and we need to work with the \(\mu\)-ordinary locus. Then we follow Hida’s idea to construct \(p\)-adic families of modular forms and give the control theorem on the dimension of the space of such \(p\)-adic families. Slides

Quantum geometry of moduli spaces of local systems

Speaker: Linhui Shen (Michigan State University)

Time: 09:30-10:30 June 3, 2020 (UTC +8)

Abstract: Let \(G\) be a split semi-simple algebraic group over \(\mathbb{Q}\). We introduce a natural cluster structure on moduli spaces of \(G\)-local systems over surfaces with marked points. As a consequence, the moduli spaces of \(G\)-local systems admit natural Poisson structures, and can be further quantized. We will study the principal series representations of such quantum spaces. It will recover many classical topics, such as the \(q\)-deformed Toda systems, quantum groups, and the modular functor conjecture for such representations. This talk will mainly be based on joint work with A.B. Goncharov. Slides

The Tate conjecture for a concrete family of elliptic surfaces

Speaker: Xiyuan Wang (Johns Hopkins University)

Time: 09:30-10:30 May 27, 2020 (UTC +8)

Abstract: We prove the Tate conjecture for a concrete family of elliptic surfaces. This is a joint work with Lian Duan. In this talk, I will begin with an general introduction to the Tate conjecture and the Fontaine-Mazur conjecture. Then I will focus on the Tate conjecture for a family of elliptic surfaces introduced by Geemen and Top, and try to explain the motivation and elementary idea behind the proof.

Hurwitz trees and deformations of Artin-Schreier covers

Speaker: Huy Dang (University of Virginia)

Time: 13:00-14:00 May 20, 2020 (UTC +8)

Abstract: In this talk, we introduce the notion of Hurwitz tree for an Artin-Schreier deformation (deformation of \( \mathbf{Z}/p \)-covers in characteristic \( p>0\) ). It is a combinatorial-differential object that is endowed with essential degeneration data, measured by Kato's refined Swan conductors, of the deformation. We then show how the existence of a deformation between two covers with different branching data (e.g., different number of branch points) equates to the presence of a Hurwitz tree with behaviors determined by the branching data. One application of this result is to prove that the moduli space of Artin-Schreier covers of fixed genus \( g \) is connected when \( g \) is sufficiently large. If time permits, we will discuss a generalization of the Hurwitz tree technique to all cyclic covers and beyond.

Symmetric power functoriality for modular forms

Speaker: James Newton (King's College London)

Time: 18:00-19:00 May 13, 2020 (UTC +8)

Abstract: Langlands functoriality predicts the transfer of automorphic representations along maps of L-groups. In particular, the symmetric power representation \( \mathrm{Symm}^{n-1} \) of \( \mathrm{GL}(2) \) should give rise to a lifting from automorphic representations of \( \mathrm{GL}(2) \) to automorphic representations of \( \mathrm{GL}(n) \). I will discuss joint work with Jack Thorne, in which we prove the existence of all symmetric power lifts for many cuspidal Hecke eigenforms (for example, those of square-free level).

Applications of Néron blowups to integral models of moduli stacks of shtukas

Speaker: Timo Richarz (TU Darmstadt)

Time: 17:00-18:00 May 6, 2020 (UTC +8)

Abstract: I will explain how Néron blowups as defined in Arnaud’s talk encode level structures on moduli stacks of bundles. This can be used to define integral models of moduli stacks of shtukas with level structures. In the case of parahoric group schemes, these models are analogues of the integral models of Shimura varieties defined by Kisin-Pappas. If time permits, I indicate some problems arising outside the case of parahoric level structures.

Dilatations and Néron blowups (with Timo Richarz and Matthieu Romagny)

Speaker: Arnaud Mayeux (BICMR)

Time: 16:00-17:00 May 6, 2020 (UTC +8)

Abstract: In this talk, I will introduce general dilatations for schemes, extending Bosch-Lütkebohmert-Raynaud dilatations. In the case of group schemes, dilatations are called Néron blowups. Dilatations and Néron blowups enjoy many properties that I will state. We will see later in this seminar some applications of this theory (level structures, moduli of shtukas). Slides