On the A-packets for genuine representations of Mp(2n)

17. veljače 2025. Sveučilišta u Zagrebu

Wen-Wei Li

Sveučilište u Pekingu wwli@pku.edu.cn https://wwli.asia

Outline

Genuine representations of metaplectic groups

LLC of Gan–Savin

Automorphic set-up

Desiderata: local and global

Results of Gan–Ichino

Strategy à la Arthur

To-do list

Hecke algebra correspondences

References

Local metaplectic covering

- $\mu_m := \mu_m(\mathbb{C})$, all rep are over \mathbb{C} .
- *F*: local field, char(F) = 0; let \mathcal{L}_F denote its Weil–Deligne group.
- W: symplectic F-vector space, dim W = 2n.
- Sp(W) = Sp(W, F) (or Sp(2n, F)): the symplectic group.

Definition

If $F \neq \mathbb{C}$, the metaplectic group is THE non-trivial central extension of locally compact groups

$$1 \rightarrow \mu_2 \rightarrow \mathsf{Mp}(W) \rightarrow \mathsf{Sp}(W) \rightarrow 1.$$

If $F = \mathbb{C}$ we put $Mp(W) = \mu_2 \times Sp(W)$.

It is customary to write Mp(2n) or Mp(2n, F).

Genuine representations

Fixing an additive character ψ of F and the symplectic form $\langle \cdot | \cdot \rangle$ on W, one can describe Mp(W) by explicit 2-cocycles (Rao, Lion–Perrin).

Representations of Mp(*W*): HC-modules or Casselman–Wallach representations if $F \supset \mathbb{R}$; smooth if $F \supset \mathbb{Q}_p$.

Definition

A representation (π, V_{π}) of Mp(W) is genuine if $\pi(z) = z \cdot id_{V_{\pi}}$ for all $z \in \mu_2$.

For instance, the Weil/oscillator representation $\omega_{\psi} = \omega_{\psi}^+ \oplus \omega_{\psi}^-$ of Mp(W) is genuine. They depend on $\psi \circ \langle \cdot | \cdot \rangle$.

Goal

Understand the genuine representation theory of Mp(W).

The L-group

Question: Langlands program for genuine representations of Mp(W)?

Fix $\psi \circ \langle \cdot | \cdot \rangle$. There are strong evidences (from Θ -correspondence, geometric Satake, etc.) for the

Definition

The L-group of Mp(W) is $Sp(2n, \mathbb{C}) \times Weil_F$, i.e. same as the L-group of the split SO(2n + 1).

This is also compatible with Weissman's definition of L-groups for coverings.

- L-parameters for Mp(W) = symplectic representations $\phi = \bigoplus_{i \in I} m_i \phi_i$ of \mathcal{L}_F , where $m_i \ge 1$, the ϕ_i 's are distinct simple representations of \mathcal{L}_F , and $\sum_i m_i \dim \phi_i = 2n$.
- A-parameters for Mp(W) = symplectic representations $\psi = \bigoplus_{i \in I} m_i \psi_i$ of dimension 2n of $\mathcal{L}_F \times SL(2, \mathbb{C})$ as above; the \mathcal{L}_F factor of each ψ_i is bounded.
- $S_{\Phi} = \text{centralizer of } \phi \text{ in } \text{Sp}(2n, \mathbb{C}) \text{ (same for } S_{\Psi}).$

•
$$S_{\Phi} = \pi_{o}(S_{\Phi})$$
 (same for S_{Ψ}).

One can describe S_{Φ} and S_{Φ} explicitly; S_{Φ} is finite abelian, and:

$$\mathcal{S}_{\Phi}^{\vee} = \boldsymbol{\mu}_{2}^{I^{+}}, \quad I^{+} := \{i \in I : \phi_{i} \text{ symplectic.}\}$$

Same for S_{ψ} , S_{ψ} and S_{ψ}^{\vee} .

Local Langlands correspondences

Let $\Phi_{\text{symp}}(2n)$ be the set of equivalence classes of L-parameters for Mp(W) (= those for SO(2n + 1)). The following is due to Adams–Barbasch ($F \supset \mathbb{R}$) and Gan–Savin ($F \supset \mathbb{Q}_p$).

Theorem (LLC)

There is a decomposition

$$\operatorname{Irr}_{\operatorname{gen}}(\operatorname{Mp}(W)) = \bigsqcup_{\Phi \in \Phi_{\operatorname{sympl}(2n)}} \Pi_{\Phi},$$

together with bijections $\Pi_{\Phi} \leftrightarrow \mathbb{S}_{\Phi}^{\vee}$ + various properties, eg.

- $\pi \in \Pi_{\Phi}$ is tempered (resp. discrete series) $\iff \phi$ is bounded (resp. does not factor through proper Levi);
- LLC reduces to tempered/bounded case via Langlands quotients;
- if φ is bounded, then $\textbf{i} \in \mathbb{S}_{\varphi}^{\vee}$ corresponds to generic representation.

- The LLC depends on ψ and the symplectic form $\langle\cdot|\cdot\rangle$ on W.
- It is proved by reduction to the LLC of SO(V^{\pm}) (Arthur, Ishimoto) where V^{\pm} is the quadratic vector space with
 - \circ dimension 2n + 1,
 - discriminant 1,
 - $\circ~$ Hasse invariant ± 1 ,

via Θ -correspondence for the reductive dual pair (Sp(W), O(V[±])).

- Note: \mathbb{S}_{Φ}^{\vee} is also in bijection with the packet Π_{Φ}^{Vogan} for $SO(V^{\pm})$.
- There is a more direct proof for $F = \mathbb{C}$.

The endoscopic viewpoint (Adams, Renard, L.)

The set of elliptic endoscopic data of Mp(W) is defined as

$$\mathcal{E}_{\mathsf{ell}}(\mathsf{Mp}(W)) := \{s \in \mathsf{Sp}(2n, \mathbb{C}) : s^2 = 1\} / \mathsf{conj}.$$
$$= \{(\underbrace{n'}_{+}, \underbrace{n''}_{-}) \in \mathbb{Z}^2_{\geq 0} : n' + n'' = n\}.$$

The endoscopic group is $SO(2n' + 1) \times SO(2n'' + 1)$.

Similar to elliptic endoscopic data for SO(2n + 1), but without symmetry $(n', n'') \leftrightarrow (n'', n')$.

Known results

- Transfer of orbital integrals (Renard for $F = \mathbb{R}$, L. '11 for $F \supset \mathbb{Q}_p$)
- Fundamental lemma for units, including the weighted case (L. '11)
- Fundamental lemma for spherical Hecke algebra (C. Luo '18).

Let $\mathbf{G}^! \in \mathcal{E}_{ell}(Mp(W))$ with endoscopic group $G^!$. The transfer of orbital integrals dualizes to a map

 $\check{\Upsilon}_{\mathbf{G}^{!},\mathsf{Mp}(W)}: \{ \text{st. dist. on } G^{!}(F) \} \rightarrow \{ \text{genuine dist. on } \mathsf{Mp}(W) \}$ sending stable virtual characters to genuine virtual characters.

- For every BOUNDED L-parameter $\phi^!$ for $G^!$, we have a stable tempered distribution $S\Theta_{\phi^!}^{G^!}$.
- $(G^!)^{\vee} = \operatorname{Sp}(2n', \mathbb{C}) \times \operatorname{Sp}(2n'', \mathbb{C}) \hookrightarrow \operatorname{Sp}(2n, \mathbb{C})$ up to conjugacy, hence $\phi^!$ maps to a bounded $\phi \in \Phi_{\operatorname{symp}}(2n)$.

Endoscopic character relations (ECR) — C. Luo

Let $\phi \in \Phi_{symp}(2n)$ be bounded. The L-packet Π_{ϕ} for Mp(W) can be characterized in terms of $\check{T}_{\mathbf{G}^{!},Mp(W)}\left(S\Theta_{\Phi^{!}}^{G^{!}}\right)$ for various $(\mathbf{G}^{!},\phi^{!})$ such that $\phi^{!} \mapsto \phi$, and some ϵ -factors.

The precise formulation will be given later on.

The adélic covering

Let F be a number field, and W a symplectic F-vector space of dimension 2n. The metaplectic group is the non-trivial central extension

$$1 \rightarrow \boldsymbol{\mu}_2 \rightarrow \mathsf{Mp}(W, \mathbb{A}_F) \rightarrow \mathbf{Sp}(W, \mathbb{A}_F) \rightarrow 1.$$

- It splits uniquely over Sp(W, F), hence it makes sense to study
 genuine automorphic forms on Mp(W, A_F), eg. Siegel modular forms of ¹/₂ + Z-weights,
 - genuine L²-automorphic spectrum.
- It is the quotient of Π[']_ν Mp(W_ν) by {(z_ν)_ν ∈ ⊕_ν μ₂ : Π_ν z_ν = 1}, hence irreducible admissibles of Mp(W, A_F) decompose into ⊗[']_ν π_ν.

Here we use the fact that $Mp(W_{\nu})$ splits over $Sp(W_{\nu}, \mathcal{O}_{\nu})$ with commutative Hecke algebras, for almost all ν .

Local desiderata for Arthur packets

Let *F* be local, dim_{*F*} W = 2n and ψ is fixed. For the study of

- 1. unitary duals,
- 2. Gelfand–Kirillov dimensions, or
- 3. global *L*²-automorphic spectrum,

the LLC is not enough: one has to go beyond tempered L-packets and study Arthur packets. My main motivation is 3.

Recall: A-parameters for Mp(W) are symplectic representations

$$\psi = \bigoplus_{i \in I} m_i \phi_i \boxtimes r(b_i) : \mathcal{L}_F \times SL(2, \mathbb{C}) \to GL(2n, \mathbb{C}),$$

where $r(b_i) := \text{Sym}^{b_i-1}(\text{std})$ and ϕ_i is bounded. Let $\Psi_{\text{symp}}(2n) = \{\text{such } \psi\}$. Define $\Psi_{\text{symp}}^+(2n)$ by dropping boundedness.

Characterization via ECR

Given a pair ($\mathbf{G}^{!}, \psi^{!}$) where $\mathbf{G}^{!} \in \mathcal{E}_{\mathsf{ell}}(\mathsf{Mp}(W))$ and $\psi^{!} \in \Psi^{+}(G^{!})$, we obtain (ψ, s) where $\psi^{!} \mapsto \psi$ and $s \in S_{\psi, 2\text{-tors}}/\mathsf{conj}$ corresponds to $\mathbf{G}^{!}$. This is actually a bijection.

Given (ψ, s) , Arthur's theory for $G^!$ provides stable virtual characters $S\Theta_{\psi^!}^{G^!}$ on $G^!(F)$. Consider the (-1)-eigenspace of std $\circ \psi$ under *s* and set

$$\epsilon(\psi^{s=-1}) := \epsilon\left(\frac{1}{2}, \psi^{s=-1}\Big|_{\mathcal{L}_F}, \psi\right).$$

Definition-Lemma

The following depends only on ψ and the image *x* of *s* in S_{ψ} .

$$T_{\psi,s} := \boldsymbol{\epsilon} \left(\boldsymbol{\psi}^{s=-1} \right) \cdot \check{\mathfrak{T}}_{\mathbf{G}^{!},\mathsf{Mp}(W)} \left(S \Theta_{\boldsymbol{\psi}^{!}}^{G^{!}} \right).$$

Every $x \in S_{\psi}$ arises from some $s \in S_{\psi,2-\text{tors}}$, hence we may write $T_{\psi,x} = T_{\psi,s}$, and consider the Fourier expansion of $x \mapsto T_{\psi,x}$ or its translates.

Main local Theorem (L.)

Given $\psi \in \Psi^+_{\text{symp}}(2n)$, set $s_{\psi} := \psi(1, \binom{-1}{-1}) \in S_{\psi}$ and let x_{ψ} be its image in S_{ψ} . Then

$$\pi_{\psi,\chi} := |\mathcal{S}_{\psi}|^{-1} \sum_{x \in \mathcal{S}_{\psi}} \chi(x_{\psi}x) T_{\psi,x}$$

is a $\mathbb{Z}_{\geq 0}$ -linear combination (possibly zero) of genuine irreducible characters of Mp(W), for all $\chi \in \mathbb{S}_{\psi}^{\vee}$. If $\psi \in \Psi_{symp}(2n)$, then these irreducible characters arise from unitary representations.

We also call it the endoscopic character relation (ECR) associated with ψ .

Definition of A-packets

Collecting the constituents of $\pi_{\psi,\chi}$ for various χ), we obtain the A-packet Π_{ψ} as a multi-set of genuine irreducibles. Rigorously, Π_{ψ} is a finite set equipped with two maps

$$\operatorname{Irr}_{\operatorname{gen}}(\operatorname{Mp}(W)) \leftarrow \Pi_{\psi} \to \mathbb{S}_{\psi}^{\vee}.$$

- The structure above is characterized completely by ECR.
- The e-factor in $T_{\psi,s}$ is a metaplectic feature: it does not appear in Arthur's original version.
- If ψ is a bounded L-parameter (i.e. all $b_i = 1$), then we recover the L-packet and Luo's ECR for the tempered LLC for Mp(W).

Furthermore, $\pi_{\psi,\chi}$ has the following properties established in [L.].

- 1. Reduction to good parity case (i.e. each simple summand in ψ is symplectic) via full parabolic induction.
- 2. Infinitesimal characters expressed in terms of ψ when $F \supset \mathbb{R}$.
- 3. Assume the covering is unramified. If ψ is trivial on $I_F \times SL(2, \mathbb{C}) \subset \mathcal{L}_F$, then Π_{ψ} has a unique spherical member, which is multiplicity-free and parametrized by $\chi = \mathbf{1}$. If ψ is not unramified then Π_{ψ} has no spherical members.
- 4. Central characters expressed in terms of $\varepsilon\text{-factors}$ and $(\psi,\chi).$
- 5. $\Pi_{\phi_{\psi}}$ embeds canonically into $\Pi_{\psi}^{\text{mult}=1}$, where for all $w \in \mathcal{L}_F$, $\phi_{+}(w) = \psi\left(w \left(\frac{|w|^{1/2}}{2}\right)\right)$ (L-parameter)

$$\Phi_{\Psi}(w) = \Psi\left(w, \left(\begin{smallmatrix} |w|^{1/2} & \\ & |w|^{-1/2} \end{smallmatrix}
ight)
ight)$$
 (L-parameter).

- 6. The effect of variation of ψ can be explicitly described, generalizing the recipe for L-packets due to Gan–Savin.
- 7. Normalization of int. op. via A-parameters.

Global desiderata

Let F be a number field. As before, dim_F W = 2n and $\psi = \bigotimes_{\nu} \psi_{\nu} : F \setminus \mathbb{A}_F \to \mathbb{C}^{\times}$ is fixed. Put $L^2_{\text{gen,disc}} := L^2_{\text{genuine,discrete}}(\mathbf{Sp}(W, F) \setminus \mathsf{Mp}(W, \mathbb{A}_F)).$

- A-parameters ψ are defined as formal sums of φ_i ⊠ r(b_i) where φ_i: cuspidal automorphic representations of GL(n_i, A_F), and b_i ∈ Z_{≥1} with parity conditions (Arthur). They are defined without resort to the hypothetical automorphic Langlands group L_F.
- Also defined: S_{ψ} and S_{ψ} equipped with localization maps, $\forall v$.
- Given ψ , can define the summand L^2_{ψ} of $L^2_{\text{gen,disc}}$ via "near equivalence classes", using the Satake parameters attached to ψ_{ν} for almost all ν .
- We say ψ is *elliptic* if $\psi = \bigoplus_{i \in I} \phi_i \boxtimes r(b_i)$ where all the $\phi_i \boxtimes r(b_i)$ are distinct and symplectic.

Theorem 1 (Gan–Ichino)

 $L^2_{\text{gen,disc}} = \widehat{\bigoplus}_{\psi:\text{elliptic}} L^2_{\psi}.$

The above is proved using $\Theta\text{-}correspondence$ in stable range. Define

$$\Pi_{\psi} := \left\{ egin{array}{c|c} \pi = (\pi_{v})_{v} & \pi_{v} \in \Pi_{\psi_{v}} ext{ (multi-set!),} \\ ext{ spherical for almost all } v \end{array}
ight\},$$

and let $\Pi_\psi(\varepsilon_\psi)$ be the subset given by

$$\prod_{\nu} \langle s_{\nu}, \pi_{\nu} \rangle = \underbrace{\varepsilon_{\psi}^{\operatorname{Art}}(s)}_{\text{same as SO}(2n+1)} \varepsilon \left(\frac{1}{2}, \psi^{s=-1} \big|_{\mathcal{L}_{\mathbf{F}}}, \psi \right), \quad \forall s \in S_{\psi} = S_{\psi}.$$

Main global Theorem (L., conjectured by Gan in ICM 2014) Grosso modo, $L^2_{\psi} \simeq \bigoplus_{\pi \in \Pi_{\psi}(\boldsymbol{\varepsilon}_{\psi})} \bigotimes_{\nu}' \pi_{\nu}$ for all elliptic ψ .

Remark. Levi subgroups of $\mathbf{Sp}(W)$ are of the form

$$\mathbf{M} = \mathbf{Sp}(W^{\flat}) \times \prod_{k=1}^{r} \mathbf{GL}(n_k), \qquad \begin{array}{l} W^{\flat} \subset W : \text{ symp. subspace,} \\ \dim W^{\flat} + 2\sum_k n_k = \dim W. \end{array}$$

One has to formulate and prove these assertions for preimages of $\mathbf{M}(F)$ (resp. $\mathbf{M}(\mathbb{A}_F)$) in Mp(W) (resp. $Mp(W, \mathbb{A}_F)$).

- 1. The twofold covering does not split over **GL** factors, but this can be handled as in Hanzer–Muić ('10), using some genuine characters made from Weil constants.
- 2. Alternatively, Mp(W) can be enlarged to $\widetilde{Sp}(W)$ by pushing out via $\mu_2 \hookrightarrow \mu_8$. Genuine representation theory is unaffected, but the preimage of $\mathbf{M}(F)$ becomes $\widetilde{Sp}(W^{\flat}) \times \prod_{k=1}^{r} \mathsf{GL}(n_k, F)$.

Both approaches rely on the choice of ψ and symplectic forms.

Waldspurger and Gan–Ichino

Consider both the local and global settings.

- When n = 1, these are known to Waldspurger.
- When ψ is generic (i.e. all $b_i = 1$), the main global theorem is due to Gan–Ichino.
- When n = 2, Gan–Ichino ('21) obtained both main theorems "by hand" with the help of Hanzer–Matić ('10).

These are all based on Θ -correspondence, not endoscopy. Compatibilities are shown in [L.]

Example: the most degenerate case

Take $\psi = \mathbf{1} \boxtimes r(2n)$.

- Locally, $\Pi_{\psi_{\nu}} = \left\{ \omega_{\psi_{\nu}}^{+}, \omega_{\psi_{\nu}}^{-} \right\}$, $\forall \nu$ (known to Adams).
- Globally, L^2_{ij} are generated by *elementary* ϑ *-series*.

Proofs: Strategy à la Arthur

Try to imitate Arthur's *endoscopic classification* (Chapters 4 and 7) to prove the local and global theorems altogether. Ingredients:

- Stabilization of trace formula. Done for Mp(W) (L. '21).
- Spectral decomposition of the stable side. Done by Arthur since the endoscopic groups are $SO(2n' + 1) \times SO(2n'' + 1)$.
- Local intertwining relation (LIR). DIFFICULT, only known for generic ψ (due to Ishimoto).

Specifically, Arthur used LIR to prove that the *L*²-automorphic spectrum involves only elliptic A-parameters (the "no embedded Hecke eigenvalues" property), for quasi-split classical groups.

It seems difficult to prove LIR directly for $Mp(W_v)$.

Shortcut (+ suggestions from Waldspurger)

Thanks to Gan–Ichino, $L^2_{gen,disc} = \widehat{\bigoplus}_{\psi:ell,} L^2_{\psi}$ is directly available to us.

- 1. Main global theorem (= decomposition of L^2_{ψ}) follows easily from STF for Mp(W, \mathbb{A}_F). Though A-packets are not yet available, the global theorem can be formulated as a character relation involving various $\pi_{\psi_{\nu},\chi_{\nu}}$.
- 2. The main local theorem is proved by global means via the main global theorem (phrased as above). Data put at the auxiliary places:
 - either from the L-packet inside an A-packet, or
 - suitable co-tempered representations ($v \nmid \infty$).

Theorem (F. Chen, '24)

Transfer for Mp(W) commutes with Aubert dual for $F \supset \mathbb{Q}_p$.

To get the co-tempered ECR from Luo's ECR via Aubert dual, some sign equality is needed; we globalize carefully and reduce it to SO case (AGIKMS, Ishimoto, Liu–Lou–Shaihidi...) via Θ .

To-do list

- Explicit construction of A-packets when $F \supset \mathbb{Q}_p$, after Moeglin, Xu, Atobe..., and multiplicity-one (work in progress by J. Chen).
- Relation to Θ -correspondence (Xu's student?).
- Relation to translation functors and cohomological induction when $F = \mathbb{R}$, à la Moeglin–Renard; Adams–Johnson packets.
- Explicit construction for $F = \mathbb{C}$ as predicted by Moeglin–Renard.
- Prove LIR.
- Application to number theory, eg. Ikeda–Yamana lifting from PGL(2) to Mp(2n) for *n* odd and *F* totally real.
- Can we use these results to study global root numbers?

Postscript: affine Hecke algebras

Suppose $F \supset \mathbb{Q}_p$ and ψ has conductor $4\mathbb{O}_F$. Let $\mathfrak{G}_{\psi}^{\pm}$ be the Bernstein block $\ni \mathfrak{u}_{\psi}^{\pm}$. Let \mathfrak{G}^{\pm} be the Bernstein block $\ni \mathfrak{l}_{SO(V^{\pm})}$.

- Gan–Savin (p > 2) and Takeda–Wood (p = 2) showed $\mathcal{G}_{\psi}^{\pm} \simeq \mathcal{G}^{\pm}$ by constructing types for \mathcal{G}_{ψ}^{\pm} and giving an explicit isomorphism between Hecke algebras.
- It is stronger (being a categorical equivalence) and looks more natural than LLC in many aspects. It also preserves unitarity, temperedness and discrete series.
- Mp(W) and SO(V[±]) share the same L-group; $\mathfrak{G}_{\psi}^{\pm} \simeq \mathfrak{G}^{\pm}$ preserves L-parameters ϕ but not the $\chi \in \mathfrak{S}_{\phi}^{\vee}$.

Natural question 1: How do the χ 's differ under $\mathcal{G}_{\psi}^{\pm} \simeq \mathcal{G}^{\pm}$?

Suppose that $\pi \in \mathcal{G}_{\psi}^{\pm}$ is irreducible and corresponds to $\sigma \in \mathcal{G}^{\pm}$;

$$\pi = \pi_{\phi,\chi}, \quad \sigma = \sigma_{\phi^{\circ},\chi^{\circ}}$$
 under LLC.

Write $\phi = \bigoplus_{i \in I} m_i \phi_i$. Identify \mathbb{S}_{ϕ}^{\vee} with $\mu_2^{I^+}$ where $I^+ \subset I$ indexes the symplectic summands in ϕ .

Theorem (F. Chen-L. '25)

We have $\varphi^\circ = \varphi$ (known to GS+TW) and $\chi^\circ = \chi \nu_\varphi$, where

$$\mathbf{v}_{\mathbf{\phi}} = (\mathbf{v}_{\mathbf{\phi},i})_{i \in I^+} \in \mathbb{S}_{\mathbf{\phi}}^{\vee}, \quad \mathbf{v}_{\mathbf{\phi},i} = \boldsymbol{\epsilon} \left(\frac{1}{2}, \boldsymbol{\phi}_i, \boldsymbol{\psi}\right).$$

Modulo [Chen–L. '23], the argument is largely "endoscopic". **Naive question 2**: How about A-packets?

Naive question 3: Other blocks?

References

- J. Arthur. The endoscopic classification of representations. AMS Colloq. Vol. 61. (2013)
- F. Chen and W.-W. Li. Intertwining operators in the Takeda–Wood isomorphism, to appear on BSMF arXiv:2312.00400.
- F. Chen, Commutation of transfer and Aubert–Zelevinski involution for metaplectic groups arXiv:2410.02481.
- F. Chen and W.-W. Li. Spectral transfer for metaplectic groups. II. Hecke algebra correspondences arXiv:2502.00781.
- W. T. Gan and A. Ichino. *The Shimura–Waldspurger correspondence for* Mp_{2n}. Ann. of Math. (2018)
- W. T. Gan and G. Savin. Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence. Compos. Math. (2012)

(Continued)

- W. T. Gan and G. Savin. Representations of metaplectic groups II: Hecke algebra correspondences. Represent. Theory (2012)
- H. Ishimoto. The endoscopic classification of representations of non-quasi-split odd special orthogonal groups. IMRN (2024)
- W.-W. Li. Stabilization of the trace formula for metaplectic groups, to appear on Astérisque arXiv:2109.06581. Black box
- W.-W. Li, Arthur packets for metaplectic groups arXiv:2410.13606 . Main reference
- C. Luo. Endoscopic character identities for metaplectic groups. Crelle's J. (2020)
- S. Takeda and A. Wood. Hecke algebra correspondences for the metaplectic group. TAMS (2018)

Thanks for your attention

Last updated: February 18, 2025