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Abstract

These are notes for a talk at the Taida Institute of Mathematical Sciences (TIMS) on February 13, 2015 at

Taipei. I try to give a quick, personal and biased survey of some aspects of Langlands program. Details are

intentionally omitted.

Nowadays the Langlands program is widely known among mathematicians. However, this huge theory is

undergoing a substantial evolution that is largely unknown to outsiders. In this short note, we shall give a

quick sketch thereof, although often inaccurate (with apologies), and give pointers to the literature. For various

reasons, we will not touch on the motivic aspect, the function �eld case or the geometric Langlands despite their

importance.

The reader is assumed to have some acquaintance of representations and automorphic forms. For more

systematic overviews on Langlands program, we recommend [26, 25, 17], just to mention a few.

1 Recollections
Generalities Consider a topological space X equipped with a Radon measure. The central issue in harmonic

analysis is to decompose the space L2 (X ) under a certain group action. Examples:

• X = Rn
, which boils down to the L2

-theory of Fourier analysis on euclidean spaces;

• X = (R/Z)n : Fourier analysis on tori — equally familiar;

• X = Γ\G where G is a real Lie group and Γ is a discrete subgroup thereof: this leads to the classical

formulation of automorphic forms;

• (The group case) X = G (F ) where F is a local �eld (eg. F = R, C or Qp ) and G is a connected reductive

F -group: this is the L2
-setup for Plancherel formula for the locally compact group G (F ).

In each case, there is a group acting unitarily on the left of L2 (X ): for example, (x ,y) ∈ (G ×G ) (F ) acts on L2 (X )
by ϕ (•) 7→ ϕ (x−1 •y). Under mild conditions onX , there exists an essentially unique decomposition into a direct
integral

L2 (X )
∼
→

⊕∫
Πunit (G )

Hπ dµ (π )

of representations on Hilbert spaces, where
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• Πunit (G ) is the unitary dual of G (F ), equipped with the Fell topology;

• µ is the Plancherel measure associated to (G (F ),L2 (X )).
See [13] or [37, Chapter 14] for details.

After the middle of the 20th century, the focus has shifted to �nding an explicit description of the Plancherel

decomposition above. For example: what is the support of µ? what are the “atoms’ of (Πunit (G ),µ )? Let’s focus

on the group case. Just as we have S ⊂ L2 (R) ⊂ S′ (an instance of rigged Hilbert space or Gelfand triple [16,

Chapter 1], [6]) in classical Fourier analysis, it turns out that there is a convenient space of “test functions” C (G )

such that C (G ) ⊂ L2 (G (F )) ⊂ C (G )′, on which the

∫ ⊕
-decomposition can precisely stated. Harish-Chandra

developed the whole machinery of C (G ), constant terms, intertwining operators, c-functions etc., to give an

explicit decomposition of L2 (G (F )) as a (G ×G ) (F )-representation. The “atoms” are the discrete series whereas

Supp(µ ) = Πtemp (G ), the tempered dual of G (F ).

Automorphic setting Let F be a global �eld with adèle ring A, and let G be a connected reductive F -group.

The modern setting for automorphic forms is the space

X := G (F )\G (A)

on which G (A) acts by right translation. De�ne A (X ) to be the space of functions ϕ : X → C satisfying

(i) ϕ is C∞;

(ii) ϕ and its derivatives under U (gC) have moderate growth, i.e. dominated by some polynomial of a height

function ‖ · ‖ on G (A) de�ned in terms of matrix entries (also called the algebraic scale structure in [6]);

(iii) ϕ is z-�nite when char(F ) = 0, where z := Z (U (gC));
(iv) ϕ is K-�nite under bilateral translation, where K is some suitable maximal compact subgroup of G (A).

Note that the K-�niteness can sometimes be removed. One often considers the quotient

X := G (F )AG,∞\G (A)

for some central subgroup AG,∞ so that vol(X ) < +∞ (reduction theory), and works within the spaceA2 (X ) :=

L2 (X )∩A (X ) of L2
-automorphic forms. Subquotients of L2 (X ) are called the (L2

-) automorphic representations.

They are generated by L2
-automorphic forms.

To remedy the perplexities on (ii), we simply quote from Harish-Chandra:

“Without the condition of moderate growth you can’t do anything.”

Also note that the adélic approach does not capture all the richness of classical automorphic forms. By the

way, it is often necessary to consider coverings G̃ � G (A) in many circumstances (eg. study of θ -functions).

A reasonable family of covering groups to work with is those arising from Brylinski-Deligne extensions [9]. For

these coverings, multiplication in G̃ involves not only the algebraic structure ofG, but also certain K-theoretical

aspects of F .

2 Langlands’ insights
Put XG := G (F )AG,∞\G (A) as above. In what follows, the representations are implicitly assumed to be smooth

and admissible. At the archimedean places, it is customary to work with Harish-Chandra modules (i.e. (g,K )-
modules) or smooth Fréchet representations of moderate growth (Casselman-Wallach): see [7] for a systematic

discussion.

Under these conventions, an irreducible representation π of G (A) factorizes into a restricted tensor product⊗′

v πv by Flath’s theorem. Therefore, the study of automorphic representations divides into two stages.

• Study of G (Fv )-representations at each place v of F , which certainly has an independent interest;

• Determine the multiplicity of an irreducible representation π =
⊗′

v πv ofG (A) in L2 (XG ) — this part has

deep connections with arithmetic!

One de�nes the Langlands dual groupG∨ ofG as a connected reductive group over C or Q` for some prime `;
to make this canonical one should �x a pinning ofG, and thenG∨ admits a Galois action via pinned automorphisms
(see [12, A.4]). De�ne the L-group of G as

LG = G∨ oWF , where WF stands for the Weil-group of F . Same for

groups over the local �elds Fv .
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Local correspondence In the local case Gv = G (Fv ), the question is reduced to describing Πtemp (Gv ), via

Langlands quotients [27]. The local Langlands correspondence predicts a surjection

Πtemp (Gv ) � Φbdd (Gv ) :=
{
bounded L-parameters ϕ : W ′

Fv →
LG

} /
G∨ − conj

with various properties (eg. compatibility with normalized parabolic induction); for the case of classical groups,

see [4, Theorem 1.5.1]. Recall that

W ′
Fv :=




WFv × SU(2), Fv is non-archimedean,

WFv , Fv is archimedean.

is the Weil-Deligne group. Its �bers Πϕ are called the (tempered) L-packets, which are expected to be �nite and

whose “internal structure” should be controlled by the S-group

Sϕ := π0 (ZG∨ (Im ϕ),1)
/
ZGal-inv

G∨ ↪→ (G∨)ad

forG quasi-split over Fv ; in general, one should pass to its inverse image in (G∨)sc (this is rather subtle: see [1]).

This is connected with the phenomenon of endoscopy.

To pass to non-tempered case, one can either (i) use Langlands quotients to reduce to tempered ones, or

(ii) replaceW ′
Fv

byW ′
Fv
× SU(2) and work with Arthur’s A-packets.

The A-packets are related to global questions and endoscopic character identities; many questions about

A-packets remain unsolved even over R and C, for example their unitarizability. For the conjectures, see [5].

When F is archimedean, the tempered local Langlands correspondence is largely based on Harish-Chandra’s

work on the tempered spectrum. For non-archimedean F , local correspondences have been established in many

cases, such as GLn (Henniart, Harris-Taylor, or Scholze), the classical groups (Arthur [4], Mok, Kaletha-Minguez-

Shin-White via trace formula), SLn and its inner forms (Hiraga-Saito [20]), etc., under various conditions.

Global correspondence Over a global �eld F , one expects a similar correspondence with the conjectural

automorphic Langlands group LF instead of WF ; it is equipped with a continuous homomorphism LF → WF .

The existence of LF hinges upon certain Tannakian structures on the automorphic representations of GL(n), for

various n. Currently the existence of LF seems out of reach, and it might turn out to be the last theorem to be

proven in Langlands program! there do exist some speculations and substitutes for LF , however: see [2] and [4,

§8.5].

Also note that M. Weissman [38] is currently developing a Langlands program for the covering groups coming

from Brylinski-Deligne extensions.

Functoriality In both local and global cases, for connected reductive groups H , G and a homomorphism

LH → LG such that the diagram

LH LG

WF

commutes, the Langlands correspondence suggests that one may “lift” a packet of representations from H to

G. This principle of functoriality can be formulated without presuming Langlands correspondence, and they

are actually interlocked in many circumstances, for instance: the use of base change in proving automorphy of

certain Galois representations.

Functoriality is extremely powerful. For example, the existence of arbitrary symmetric-power lifts will imply

the generalized Ramanujan conjecture, which is commonly believed to be as hard as the functoriality in general!

We refer to the long survey [8].

3 Some approaches
Converse theorems Weil’s converse theorem characterizes the L-functions L(s, f ) =

∑
n≥0

ann
−s

coming

from a holomorphic modular form f in terms of the analytic properties and functional equations of its twists

L(s, f × χ ) =
∑
n≥0

an χ (n)n
−s
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by Dirichlet characters. Generalization to general GLn is obtained in a long series of papers by Piatetski-Shapiro

and his collaborators.

Let π =
⊗′

v πv be an irreducible admissible representation of GLn (A). Assume that the central characterωπ
is an idèle class character. Form the partial L-function LS (s,π ) as an Euler product and assume its convergence

for Re(s ) � 0. Roughly speaking, the converse theorem in [10] asserts that π is cuspidal automorphic if for all

1 ≤ m ≤ n − 1 and all cuspidal automorphic representation τ of GLm (A), the Rankin-Selberg L-function [22]

L(s,π × τ ), as an Euler product, satis�es nice analytic properties as follows:

(i) L(s,π × τ ) extends to an entire function on C;

(ii) L(s,π × τ ) is bounded in vertical strips of �nite width;

(iii) L(s,π × τ ) satis�es a functional equation s ↔ 1 − s with respect to suitable ε-factors.

The converse theorem is useful for establishing functorial lifts to GLn ; it also plays a crucial rôle in the proof

[29] of the global Langlands correspondence for GLn over function �elds. The main obstacle is the niceness

alluded to above, which often requires ingenuous zeta integrals representing the relevant L-functions — one

may regard the Langlands-Shahidi method [35] as an instance, in which the analytic properties come ultimately

from those of Eisenstein series......

Another issue is to limit the rami�cation and the rankm of the twisting representation τ ; for example, Jacquet

conjectures that 1 ≤ m ≤ b n
2
c su�ces. We refer to Cogdell’s survey [11] on these questions.

Trace formulawith endoscopy The comparison of Arthur-Selberg trace formulae is capable of yielding quite

complete results about automorphic representations. Thus far, in characteristic zero it is most successful in the

case of classical groups [4] via twisted endoscopy. Even for classical groups, the prerequisites are overwhelming

at �rst sight: twisted trace formula, endoscopic transfer, fundamental lemma, stabilization, etc. The remaining

ingredients for [4] are now completed in a really long series of preprints by Moeglin and Waldspurger.

Take the split group SO2n+1 over a local �eld F for example, its dual group is Sp
2n (C) with trivial Galois

action, which may be realized as

Sp
2n (C) = {x ∈ GL2n (C) : θ (x ) = x }

where we choose a symplectic form 〈·|·〉 on C2n
and de�ne the involution θ of GL2n by

〈x (w1) |w2〉 = 〈w1 |θ (x )
−1 (w2)〉, w1,w2 ∈ C

n .

Simply put, θ is the “transpose-inverse” with respect to 〈·|·〉. Very roughly speaking, twisted endoscopy [28]

allows one to compare

{irreps of SO2n+1 (F )} and {twisted irreps of GL2n (F )}

in a manner dual to the inclusion Sp
2n (C) ↪→ GL2n (C) of �xed-points of the involution θ . Here, irreducible

“twisted representation” may be viewed as a pair (π̃ ,π ) where (π ,V ) is an irreducible representation of GL2n (F )
and π̃ is a map from the GL2n (F )-bitorsor of non-degenerate bilinear forms on F 2n

to EndC (V ) such that

π̃ (дxh) = π (д)π̃ (x )π (h), д,h ∈ GL2n (F ).

Now the other cases should become reasonable: it remains to incorporate the Galois action carefully for

non-split SO and unitary groups. People are always thinking about a similar strategy for the exceptional group

G2; I am not sure about the current status of this project.

The L-function machine Since we have mentioned the zeta integrals. It is time to sketch the well-known

paradigm of integral representations of L-functions. The simplest case is the global zeta integral in Tate’s thesis

Z (χ | · |s ,Φ) =

∫
A×

χ (x ) |x |sΦ(x ) d
×x , Φ =

∏
v

Φv ∈ S (A)

for Re(s ) � 0 and χ =
∏
v χv : F×\A× → C×; it “represents” the Hecke L-function L(s, χ ). In general, the

machine functions in �ve steps.
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1. Write done the appropriate global zeta integralZ (s,π , · · · ) — truly an art, and express it as an Euler product∏
v Z (s,πv , · · · ) at least when Re(s ) � 0.

2. Establish the analytic properties of global zeta integrals (meromorphic continuation, etc.)

3. Establish the analytic properties of local zeta integrals Z (s,πv , · · · ).

4. Unrami�ed calculation: show that for a certain “basic” test function at a unrami�ed place, Z (s,πv , · · · )
equals the desired unrami�ed L(s,πv ,ρ).

5. Establish other properties of local zeta integrals such as non-vanishing, and de�ne local L-factors L(s,πv ,ρ)
at each place v as greatest common divisors.

Once successful, the machine will output analytic properties of the partial automorphic L-function LS (s,π ,ρ).

Automorphic descent Unlike the approaches via converse theorem or trace formula, the descent method,

previously known as backward lifting (!!), gives a more explicit construction of automorphic forms. We refer to

the book [19] for a systematic introduction. Roughly speaking, one proceeds by �rst taking a suitable residue

of an Eisenstein series on a big group GLN (A), induced from a cuspidal automorphic representation τ on a Levi

subgroupG (A), and then taking suitable periods to obtain automorphic forms on smaller classical groups H (A).
The relevant periods here are of

• Bessel/Gelfand-Graev type (orthogonal case), or

• Fourier-Jacobi type (symplectic or metaplectic case).

Integral representations of this sort date back to the works of Ginzburg, Piatetski-Shapiro et al [18]. Etymology:

descent is an operation inverse to functoriality lift.

GLN

H G : Levi subgroup

periods residue of Eisenstein series

There is also a local counterpart of descent. They are intricately connected with questions in relative har-

monic analysis such as multiplicity one of Bessel or Fourier-Jacobi models, the Gan-Gross-Prasad conjectures,

etc. Currently, this approach is being developed rapidly by Professor D. Jiang and his school.

4 The relative setup
To begin with, assume F local. In our earlier digression about decomposing L2 (X ), it should be clear that a priori,
there is no reason to limit to the group case X = G (F ). One can also consider “reasonable” spaces X with a right

G (F )-action and study the spectrum of L2 (X ). Note that we pretend X equipped with an invariant measure: in

general, there is always some workaround...

Several natural questions arise:

(i) When does an irreducible unitary representation of G (F ) appears in L2 (X )? Alternatively, when does an

admissible irreducibleG (F )-representation π embed intoC∞ (X )? Note that the second question in the non-

archimedean group case is easy: an admissible irreducible representation Π of G (F ) × G (F ) embeds into

C∞ (G (F )) if and only if Π ' π̌ � π (here π̌ is the contragredient), in which case the space of embeddings is

1-dimensional; indeed, it is spanned by the matrix coe�cient map

v̌ ⊗ v 7−→ 〈v̌,π (·)v〉 ∈ C∞ (X ).

(ii) Describe the space of embeddings HomG (π ,C
∞ (X )) mentioned above. Under what conditions is it �nite-

dimensional?

(iii) Describe the Plancherel measure for the direct integral decomposition of L2 (X ).
(iv) Explicate its relation with local Langlands correspondence, A-packets, etc.

Note that when F is non-archimedean andX = H (F )\G (F ), the space HomG (π ,C
∞ (X )) is canonically isomorphic

with HomH (π ,C), the space of H (F )-invariant linear functionals. Representations with HomH (π ,C) , 0 are

called H -distinguished. One must keep in mind that (H\G ) (F ) ) H (F )\G (F ) in general.
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Now assume F global. One asks if the H -period integral

ϕ 7→

∫
H (F )\H (A)

ϕ

(assuming convergence) of an automorphic representation π is identically zero. Automorphic representations π
with nonzero H -periods are called globally H -distinguished. Distinction by a subgroup H is a central concern

for automorphic representation. Global distinction implies local distinction everywhere, but the converse often

requires serious global obstructions such as the non-vanishing of certain L-values. A well-known instance is the

study of toric periods on PGL2 by Waldspurger et al (see below).

The relative trace formula developed by Jacquet. King Fai Lai, Rallis et al. [21, 23, 24] is a powerful tool for

studying periods. In particular, Waldspurger’s work on toric periods has been treated in this way in [23].

These questions were studied on a case-by-case basis, eg. the algebraic symmetric spacesH\G where (Gθ )0 ⊂
H ⊂ Gθ

for some involution θ : G → G. Recall that a spherical variety under a group G (let’s assume it split)

is a G-variety X which has an open orbit under a Borel subgroup B ⊂ G. The Luna-Vust theory provides

a combinatorial description of spherical varieties via colored cones, which generalizes the familiar case of toric

varieties; see eg. [36]. After the groundbreaking works of Sakellaridis (eg. [33, 34], also inspired by [15]), it seems

that spherical varieties form a natural framework for relative harmonic analysis. Furthermore, it is possible to

attach L-groups to a spherical homogeneous space, thereby integrating the relative theory into functoriality.

This is a highly active �eld of research and it is beyond my capability to give a survey. Nevertheless, they

are likely to become a must-read for future generations.

5 Beyond endoscopy?
So far, most instances of the functoriality are obtained for L-embeddings

LH ↪→ LG of L-groups which are not

“too di�erent” (eg. the endoscopic case). In [31, 14] Langlands proposed a new usage of the trace formula to

prove new cases of functoriality. Being a novice, I can only outline some facets of the program(s). His ideas seem

to involve the following:

• A notion of primitive automorphic representations of G (= not lifted from a smaller H ), to be detected by

poles of L-functions.

• Study poles of L-functions by inserting carefully crafted test functions into the trace formula, then consider

some limit form of the cuspidal part with analytic tools.

• Use of the Poisson summation formula or its variants (cf. La�orgue’s “kernel for functoriality” [30]).

• Work with the stable trace formula [3, §29] that seems indispensable for comparing trace formulae.

• Non-endoscopic stable character relations, and a study of transfer factors, singularities, etc. in this frame-

work [32]

See also the afterward of [3] for relevant discussions.

Surely, this is not the end of the story. We recommend Chung Pang Mok’s slides on Speculations about

Langlands program.
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