On a lifting of I keda-Yamana

25 August 2024 SUSTech

Wen-Wei Li

Peking University wwli@pku.edu.cn

Genesis: Ikeda (2001)

$$f \in S_{2k}(\mathsf{SL}_2(\mathbb{Z})) \qquad \text{nor. eigenform, } k \in \mathbb{Z}_{\geqslant 1}$$

$$\downarrow$$

$$\mathcal{F} \in S_{k+\frac{n}{2}}^{(n)}(\mathsf{Sp}_{2n}(\mathbb{Z})) \qquad \text{nor. eigenform, } n \text{ even, } k \equiv \frac{n}{2} \mod 2$$

such that $L(s, \mathfrak{F}) = \zeta(s) \prod_{i=1}^{n} L(s + k + n - i, f)$.

Here Sp_{2n} is the symplectic group of rank *n*, and $S_{k+\frac{n}{2}}^{(n)}$ is the space of Siegel cusp forms of weight $k + \frac{n}{2}$ and level Γ (to be reviewed).

- Conjectured by Duke–Imamoglu, generalizing Saito–Kurokawa lifting.
- Done explicitly by writing down an Fourier–Jacobi expansion for F.
- Many applications in number theory.

Hilbert–Siegel modular forms

- *F*: totally real number field, $[F : \mathbb{Q}] = d$, $n \in \mathbb{Z}_{\geq 1}$. Fix an additive character ψ of $F \setminus (\mathbb{A} := \mathbb{A}_F)$.
- \mathcal{H}_n : the Siegel upper half-plane of degree *n*, on which $Sp_{2n}(\mathbb{R})$ acts.
- Mp_{2n}(ℝ) → Sp_{2n}(ℝ): non-trivial twofold covering of Lie groups, not algebraic (called *metaplectic covering*).
- Weight *d*-tuple $\ell = (\ell_v)_{v \mid \infty}$ where $\ell_v \in \frac{1}{2}\mathbb{Z}$, with $2\ell_v \equiv 2\ell_w \pmod{2}$ for all $v, w \mid \infty$.
- Automorphy factor $J_{\ell}(\tilde{g}, \mathcal{Z}) = \prod_{\nu \mid \infty} j(\tilde{g}_{\nu}, \mathcal{Z}_{\nu})^{2\ell_{\nu}}$ where $\tilde{g} = (\tilde{g}_{\nu})_{\nu \mid \infty}$, $\mathcal{Z} = (\mathcal{Z}_{\nu})_{\nu \mid \infty}$, with

$$j: \mathsf{Mp}_{2n}(\mathbb{R}) \times \mathcal{H}_n \to \mathbb{C}^{\times}, \quad j(\tilde{g}_{\nu}, \mathcal{Z}_{\nu})^2 = \det(C_{\nu}\mathcal{Z}_{\nu} + D_{\nu})$$

where $\tilde{g}_{\nu} \mapsto \begin{pmatrix} * & * \\ C_{\nu} & D_{\nu} \end{pmatrix} \in \mathsf{Sp}_{2n}(\mathbb{R}).$

İkeda's lifting	Generalization	Yamana's conjecture	Main results	References
OO●OOO	OO	000	000	00

- When $\forall \ell_{\nu} \in \mathbb{Z}$, the $J_{\ell}(\cdot, \mathbb{Z})$ descends to $Sp_{2n}(\mathbb{A}_{\infty})$.
- Otherwise J_ℓ(·, Z) can be defined on not-too-big congruence subgroups Γ.

Hilbert–Siegel modular forms of weight ℓ and level Γ

These are holomorphic functions $\mathfrak{F}: \prod_{\nu\mid\infty} \mathfrak{H}_n \to \mathbb{C}$ such that

$$\mathfrak{F}(\gamma \mathfrak{Z}) = J_{\ell}(\gamma, \mathfrak{Z})\mathfrak{F}(\mathfrak{Z}), \quad \forall \gamma \in \Gamma, \ \mathfrak{Z} \in \prod_{\nu \mid \infty} \mathfrak{H}_n,$$

plus conditions at cusps if n = 1 and $F = \mathbb{Q}$.

We get the spaces of modular and cusp forms $M_{\ell}^{(n)}(\Gamma) \supset S_{\ell}^{(n)}(\Gamma)$.

IKEDA'S LIFTING	Generalization	Yamana's conjecture	Main results	References
000●00	OO	000	000	00

Adelic interpretation:

- If $\forall \ell_{v} \in \mathbb{Z}$, these are (certain) automorphic forms on $Sp_{2n}(\mathbb{A})$.
- If $\forall \ell_{\nu} \in \frac{1}{2} + \mathbb{Z}$, we need to pass to a twofold covering.

Below, *F* can be any number field, $\mu_2 := \mu_2(\mathbb{C})$.

• At each place v, we have a topological central extension

$$1 \to \mu_2 \to \underbrace{\mathsf{Mp}_{2n}(F_{\nu})}_{\text{non alg. unless } F = \mathbb{C}} \to \mathsf{Sp}_{2n}(F_{\nu}) \to 1.$$

• Let $Mp_{2n}(\mathbb{A}) := \prod_{\nu}' Mp_{2n}(F_{\nu})/junk$, then

$$1
ightarrow \mu_2
ightarrow \mathsf{Mp}_{2n}(\mathbb{A})
ightarrow \mathsf{Sp}_{2n}(\mathbb{A})
ightarrow \mathsf{I},$$

which splits canonically over $Sp_{2n}(F)$.

IKEDA'S LIFTING	Generalization	Yamana's conjecture	Main results	References
0000000	OO	000	000	00

- They are called *metaplectic coverings* or *metaplectic groups*.
- We study *genuine* representations and genuine automorphic forms on them. "Genuine" means: μ_2 acts tautologically.
- Genuine automorphic forms/representations provide a natural set-up for studying Hilbert–Siegel modular forms of ¹/₂ + Z weights (Weil, Shimura, Waldspurger...)

Some examples

- Classically, ⊖-series of unimodular lattices can give rise to modular forms of half-integral weight.
- Θ -correspondence involves metaplectic groups.

Revisiting Ikeda lifting

To $f \in S_{2k}(\mathsf{SL}_2(\mathbb{Z}))$ are attached:

- 1. a cuspidal automorphic representation $\pi = \bigotimes_{\nu}' \pi_{\nu}$ of $PGL_2(\mathbb{A})$;
- 2. an L-parameter $\varphi_{\circ} : \mathcal{L}_{\mathbb{Q}} \to \mathsf{PGL}_2^{\vee} = \mathsf{SL}_2(\mathbb{C});$
- 3. the composite

$$\psi: \mathcal{L}_{\mathbb{Q}} \times SL_{2}(\mathbb{C}) \xrightarrow{\varphi_{\circ} \boxtimes r(n)} SO_{2n}(\mathbb{C}) \hookrightarrow SO_{2n+1}(\mathbb{C}) = Sp_{2n}^{\vee}$$

where r(n) = the *n*-dimensional irreducible representation of $SL_2(\mathbb{C})$, symplectic for even *n*, orthogonal for odd *n*.

Arthur's multiplicity formula explains the lifting \mathcal{F} : it is parameterized by the *Arthur parameter* ψ for Sp_{2n}!

Remark

The automorphic Langlands group \mathcal{L}_Q is hypothetical, however the statements still make sense (see Arthur's book).

Ikeda–Yamana (2020)

They generalize [Ikeda] to Hilbert modular forms for PGL_2 over totally real *F*, general level, and the *n* can be odd.

 $\begin{array}{ll} f: & \text{Hilbert nor. eigenform, weight} = 2k, \ \forall k_{\nu} \in \mathbb{Z}_{\geq 1} \\ \downarrow \\ \mathcal{F}: & \text{Hilbert-Siegel cusp form } \in S_{k+\frac{n}{2}}^{(n)}. \end{array}$

Here f generates $\pi = \bigotimes_{\nu}' \pi_{\nu}$, and they impose

- some "parity conditions" on π_{fini} ,
- $k_{\nu} > \frac{n}{2}$ for all $\nu \mid \infty$.

When *n* is even (resp. odd), \mathcal{F} lives on $Sp_{2n}(\mathbb{A})$ (resp. $Mp_{2n}(\mathbb{A})$).

İKEDA'S LIFTING	GENERALIZATION	Yamana's conjecture	Main results	References
000000	O	000	000	00

- The proof is a beautiful blend of explicit Fourier–Jacobi expansion + representation theory.
- In terms of Arthur parameters (say for **odd** *n*): π has L-parameter ϕ_0 , and we obtain

$$\psi: \mathcal{L}_{\mathbb{Q}} \times SL(2, \mathbb{C}) \xrightarrow{\varphi_{0} \boxtimes r(n)} Sp_{2n}(\mathbb{C}) =: \mathsf{Mp}_{2n}^{\vee}.$$

The last =: is an instance of *Langlands' program for covering groups*, in the most accessible (yet nontrivial) case of Mp_{2n}. See Gan's ICM talk or [Gan–Gao–Weissman] for details.

• In particular, the Ikeda–Yamana lifting for odd *n* should be "explained" by **Arthur's multiplicity formula for** Mp_{2n}.

The lifting is best phrased in terms of...

Yamana's conjecture

Reference: Shunsuke Yamana, *The CAP representations indexed by Hilbert cusp forms*. **arXiv:1609.07879**

Let *n* be odd, *F*: totally real, $\psi = \prod_{\nu} \psi_{\nu} : F \setminus \mathbb{A} \to \mathbb{C}^{\times}$ satisfies $\psi_{\nu}(x) = e^{2\pi\sqrt{-1}\cdot x}$ for all $\nu \mid \infty$ and $x \in \mathbb{R}$.

- Let π be generated by a Hilbert cusp form for PGL₂ over *F* of weight 2k, where $k = (k_v)_{v \mid \infty}$ with $k_v \in \frac{1}{2} + \mathbb{Z}$ for all $v \mid \infty$.
- To π is attached $\phi_{o} : \mathcal{L}_{F} \to SL_{2}(\mathbb{C}) = Mp_{2}^{\vee}$ (use Arthur's makeshift parameters to get rid of \mathcal{L}_{F}).
- From φ_o we obtain Waldspurger's packet {π⁺_ν, π⁻_ν} of genuine irreducible representations of Mp₂(F_ν), at each place ν.

We will define genuine irreducible representations Π_{ν}^+ , Π_{ν}^- of $Mp_{2n}(F_{\nu})$ from ϕ_0 , at each place ν .

Ikeda's lifting Generalization Yamana's conjecture 000000 00 0●0	Main results 000	References 00
--	---------------------	------------------

• Non-Archimedean case Define Π_{ν}^{\pm} as the Langlands quotient

$$\underbrace{|\det|_{\nu}^{\frac{n-1}{2}}\pi_{\nu}\boxtimes\cdots\boxtimes|\det|_{\nu}\pi_{\nu}}_{\frac{n-1}{2} \text{ copies of } \mathsf{GL}_{2}}\boxtimes\pi_{\nu}^{\pm} \twoheadrightarrow \Pi_{\nu}^{\pm}.$$

They are expected to appear in the Arthur packet $\Pi_{\psi_{\nu}}$ (a multi-set of unitary irreducible genuine representations) with multiplicity one.

- **Real case** The metaplectic covering restricts to the unique non-split twofold covering $\tilde{U}(n) \rightarrow U(n)$. Consider $\ell \in \frac{1}{2} + \mathbb{Z}$ with $\ell > 0$. Define
 - $D_{\ell}^{(n)}$: the lowest weight module of $Mp_{2n}(\mathbb{R})$ with lowest $\tilde{U}(n)$ -type det^{ℓ} (\Longrightarrow holomorphic);
 - $\overline{D}_{\ell}^{(n)}$: the highest weight module of $Mp_{2n}(\mathbb{R})$ with highest $\tilde{U}(n)$ -type det^{- ℓ} (\implies anti-holomorphic).

$$\Pi_{\nu}^{(-1)^{\frac{n-1}{2}}} := D_{k_{\nu}+\frac{n}{2}}^{(n)}, \quad \Pi_{\nu}^{(-1)^{\frac{n+1}{2}}} := \overline{D}_{k_{\nu}+\frac{n}{2}}^{(n)}.$$

İKEDA'S LIFTING	Generalization	Yamana's conjecture	Main results	References
000000	00	oo●	000	00

Consider $(\varepsilon_{\nu})_{\nu:place}$ with $\varepsilon_{\nu} \in \{\pm 1\}$, assume $\varepsilon_{\nu} = 1$ for almost all ν .

Conjecture (Yamana)

The genuine representation $\bigotimes_{\nu}^{\prime} \prod_{\nu}^{\varepsilon_{\nu}}$ of $Mp_{2n}(\mathbb{A})$ occurs with multiplicity 1 in the cuspidal automorphic spectrum when $\prod_{\nu} \varepsilon_{\nu} = \varepsilon \left(\frac{1}{2}, \pi\right)$, and has multiplicity 0 otherwise.

When n = 1, this recovers Waldspurger's celebrated results for $Mp_2(\mathbb{A})$.

Theorem (essentially in [Ikeda-Yamana])

If π_v is non-supercuspidal for all $v \nmid \infty$, and $k_v > \frac{n}{2}$ for all $v \mid \infty$, then the conjecture holds true.

Main results

Theorem in progress (L.)

The conjecture holds true if the cuspidal automorphic spectrum is replaced by the discrete L^2 -automorphic one.

If $k_{\nu} > \frac{n}{2}$ for all $\nu \mid \infty$, then Π_{ν}^{\pm} are tempered (in fact L^2), so $L_{\text{cusp}}^2 = L_{\text{disc}}^2$ (a well-known result of Wallach).

The main ingredients include:

- Arthur packets for Mp_{2n} (local);
- Arthur's multiplicity formula for Mp_{2n} (global);
- multiplicity-one of Π_{ν}^{\pm} in the Arthur packet $\Pi_{\psi_{\nu}}$, where $\psi := \phi_{\circ} \boxtimes r(n) : \mathcal{L}_{F} \times SL(2, \mathbb{C}) \to Sp_{2n}(\mathbb{C}).$

They are also works in progress, nearing completion IMAO.

İKEDA'S LIFTING	Generalization	Yamana's conjecture	Main results	References
000000	OO	000	O●O	00
000000	00	000	000	00

Arthur's conjectures predict (among others)

 $L^2_{\operatorname{disc}}(\operatorname{Sp}_{2n}(F) \setminus \operatorname{Mp}_{2n}(\mathbb{A})) = \bigoplus_{\xi} L^2_{\xi}, \quad \xi : \text{``discrete'' Arthur parameters.}$

This decomposition is already done by Gan–Ichino (2018).

- If ⊗[']_ν Π^{ε_ν}_ν occurs in L²_{disc}, it must occur in L²_ψ by consideration of Satake parameters.
- One can then apply Arthur's multiplicity formula for Mp_{2n} (in progress) + multiplicity-one (see below) to conclude. The appearance of ϵ $(\frac{1}{2}, \pi)$ here is a *metaplectic feature* here!

When $\nu \nmid \infty$, multiplicity-one of Π_{ν}^{\pm} in $\Pi_{\psi_{\nu}}$ is part of the general properties of Arthur packets, as Π_{ν}^{\pm} are defined as Langlands quotients.

 \rightsquigarrow Remains to show multiplicity-one for $v \mid \infty$. A **real problem**.

Sketch of the strategy over ${\mathbb R}$ (in progress)

Remark

Assuming that a theory à la Adams–Johnson of (certain) Arthur packets of $Mp_{2n}(\mathbb{R})$ exists, then multiplicity-one will follow.

Instead, we try an *ad hoc* approach as follows.

- Step 1 ($k > \frac{n}{2}$): Globalize to \mathbb{Q} , combine the multiplicity formula with the results of Ikeda–Yamana to get multiplicity one.
- Step 2 ($k \in \mathbb{Z}_{\geq 1}$): Use Zuckerman's translation functor.
 - 1. Translation commutes with transfer imitate the arguments of Moeglin–Renard.
 - 2. Translation preserves highest/lowest weight modules (look at Verma modules).
 - 3. No loss of information in translation: use the equi-singularity of the infinitesimal characters in question.

In this way, we hope to deduce multiplicity-one from Step 1.

İKEDA'S LIFTING	Generalization	Yamana's conjecture	Main results	References
000000	OO	000	000	●O
Main rofe	roncoc			

Main references

- 1. James Arthur, The endoscopic classification of representations: orthogonal and symplectic groups. AMS Coll. Vol. 61 (2013).
- 2. Tamotsu Ikeda, On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n. Ann. Math. Vol. 154, No. 3 (2001).
- 3. Tamotsui Ikeda and Shunsuke Yamana, On the lifting of Hilbert cusp forms to Hilbert-Siegel cusp forms. ASENS tome 53, fascicule 5 (2020).
- 4. Wee Teck Gan, Fan Gao and Martin Weissman, *L-groups and the Langlands program for covering groups*, Astérisque No. 398 (2018).
- 5. Shunsuke Yamana, The CAP representations indexed by Hilbert cusp forms. arXiv:1609.07879

Thanks for your attention

Last updated: January 25, 2025