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Genesis: Ikeda (2001)

f ∈ S2k(SL2(Z)) nor. eigenform, k ∈ Z⩾1

F ∈ S(n)k+ n
2
(Sp2n(Z)) nor. eigenform, n even, k ≡ n

2 mod 2

such that L(s, F) = ζ(s)
∏n

i=1 L(s+ k+ n− i, f ).

Here Sp2n is the symplectic group of rank n, and S
(n)
k+ n

2
is the space of

Siegel cusp forms of weight k+ n
2 and level Γ (to be reviewed).

• Conjectured by Duke–Imamoglu, generalizing Saito–Kurokawa
lifting.

• Done explicitly by writing down an Fourier–Jacobi expansion for F.

• Many applications in number theory.
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Hilbert–Siegel modular forms

• F: totally real number field, [F : Q] = d, n ∈ Z⩾1. Fix an additive
characterψ of F\(A := AF).

• Hn: the Siegel upper half-plane of degree n, on which Sp2n(R) acts.

• Mp2n(R)↠ Sp2n(R): non-trivial twofold covering of Lie groups,
not algebraic (calledmetaplectic covering).

• Weight d-tuple ℓ = (ℓv)v|∞ where ℓv ∈ 1
2Z, with 2ℓv ≡ 2ℓw

(mod 2) for all v,w | ∞.

• Automorphy factor Jℓ(g̃, Z) =
∏

v|∞ j(g̃v, Zv)2ℓv where g̃ = (g̃v)v|∞,
Z = (Zv)v|∞, with

j : Mp2n(R)×Hn → C×, j(g̃v, Zv)2 = det(CvZv + Dv)

where g̃v 7→
(
∗ ∗
Cv Dv

)
∈ Sp2n(R).
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• When ∀ℓv ∈ Z, the Jℓ(·, Z) descends to Sp2n(A∞).

• Otherwise Jℓ(·, Z) can be defined on not-too-big congruence
subgroups Γ .

Hilbert–Siegelmodular forms ofweight ℓ and level Γ
These are holomorphic functions F :

∏
v|∞Hn → C such that

F(γZ) = Jℓ(γ, Z)F(Z), ∀γ ∈ Γ , Z ∈
∏
v|∞ Hn,

plus conditions at cusps if n = 1 and F = Q.

We get the spaces of modular and cusp formsM(n)
ℓ (Γ) ⊃ S(n)ℓ (Γ).
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Adelic interpretation:

• If ∀ℓv ∈ Z, these are (certain) automorphic forms on Sp2n(A).

• If ∀ℓv ∈ 1
2 +Z, we need to pass to a twofold covering.

Below, F can be any number field,µ2 := µ2(C).

• At each place v, we have a topological central extension

1→ µ2 → Mp2n(Fv)︸ ︷︷ ︸
non alg. unless F=C

→ Sp2n(Fv) → 1.

• LetMp2n(A) :=
∏ ′

v Mp2n(Fv)
/
junk, then

1→ µ2 → Mp2n(A) → Sp2n(A) → 1,

which splits canonically over Sp2n(F).
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• They are calledmetaplectic coverings ormetaplectic groups.

• We study genuine representations and genuine automorphic forms
on them. “Genuine” means: µ2 acts tautologically.

• Genuine automorphic forms/representations provide a natural
set-up for studying Hilbert–Siegel modular forms of 12 +Z weights
(Weil, Shimura, Waldspurger...)

Some examples
• Classically,Θ-series of unimodular lattices can give rise to modular
forms of half-integral weight.

• Θ-correspondence involves metaplectic groups.
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Revisiting Ikeda lifting
To f ∈ S2k(SL2(Z)) are attached:

1. a cuspidal automorphic representation π =
⊗ ′

v πv of PGL2(A);

2. an L-parameterϕ0 : LQ → PGL∨2 = SL2(C);

3. the composite

ψ : LQ × SL2(C)
ϕ0⊠r(n)−−−−−→ SO2n(C) ↪→ SO2n+1(C) = Sp∨

2n

where r(n) = the n-dimensional irreducible representation of
SL2(C), symplectic for even n, orthogonal for odd n.

Arthur’smultiplicity formula explains the lifting F: it is
parameterized by the Arthur parameterψ for Sp2n!

Remark
The automorphic Langlands groupLQ is hypothetical, however the
statements still make sense (see Arthur’s book).
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Ikeda–Yamana (2020)

They generalize [Ikeda] to Hilbert modular forms for PGL2 over totally
real F, general level, and the n can be odd.

f : Hilbert nor. eigenform, weight = 2k, ∀kv ∈ Z⩾1

F : Hilbert–Siegel cusp form ∈ S(n)k+ n
2

.

Here f generates π =
⊗ ′

v πv, and they impose

• some “parity conditions” on πfini,

• kv > n
2 for all v | ∞.

When n is even (resp. odd), F lives on Sp2n(A) (resp.Mp2n(A)).
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• The proof is a beautiful blend of explicit Fourier–Jacobi expansion +
representation theory.

• In terms of Arthur parameters (say for odd n): π has L-parameter
ϕ0, and we obtain

ψ : LQ × SL(2,C)
ϕ0⊠r(n)−−−−−→ Sp2n(C) =: Mp∨

2n .

The last=: is an instance of Langlands’ program for covering groups, in
the most accessible (yet nontrivial) case ofMp2n. See Gan’s ICM talk
or [Gan–Gao–Weissman] for details.

• In particular, the Ikeda–Yamana lifting for odd n should be
“explained” by Arthur’smultiplicity formula forMp2n.

The lifting is best phrased in terms of...
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Yamana’s conjecture

Reference: Shunsuke Yamana,TheCAP representations indexed byHilbert
cusp forms. arXiv:1609.07879

Let n be odd, F: totally real,ψ =
∏

vψv : F\A → C× satisfies
ψv(x) = e2π

√
−1·x for all v | ∞ and x ∈ R.

• Let π be generated by a Hilbert cusp form for PGL2 over F of weight
2k, where k = (kv)v|∞ with kv ∈ 1

2 +Z for all v | ∞.

• To π is attachedϕ0 : LF → SL2(C) = Mp∨
2 (use Arthur’s makeshift

parameters to get rid ofLF).

• Fromϕ0 we obtainWaldspurger’s packet {π+v ,π−v } of genuine
irreducible representations ofMp2(Fv), at each place v.

We will define genuine irreducible representationsΠ+
v ,Π−

v of
Mp2n(Fv) fromϕ0, at each place v.

http://arxiv.org/abs/1609.07879
http://arxiv.org/abs/1609.07879
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• Non-Archimedean case DefineΠ±
v as the Langlands quotient

| det |
n−1
2
v πv ⊠ · · ·⊠ | det |vπv︸ ︷︷ ︸

n−1
2 copies of GL2

⊠π±v ↠ Π±
v .

They are expected to appear in the Arthur packetΠψv (a multi-set of
unitary irreducible genuine representations) with multiplicity one.

• Real case Themetaplectic covering restricts to the unique non-split
twofold covering Ũ(n) → U(n). Consider ℓ ∈ 1

2 +Z with ℓ > 0.
Define
◦ D(n)

ℓ : the lowest weight module ofMp2n(R)with lowest Ũ(n)-type detℓ

( =⇒ holomorphic);
◦ D(n)

ℓ : the highest weight module ofMp2n(R)with highest Ũ(n)-type det−ℓ

( =⇒ anti-holomorphic).

Π
(−1)

n−1
2

v := D(n)
kv+ n

2
, Π

(−1)
n+1
2

v := D(n)
kv+ n

2
.
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Consider (ϵv)v:place with ϵv ∈ {±1}, assume ϵv = 1 for almost all v.

Conjecture (Yamana)
The genuine representation

⊗ ′
v Π
ϵv
v ofMp2n(A) occurs with

multiplicity 1 in the cuspidal automorphic spectrumwhen∏
v ϵv = ϵ

( 1
2 ,π

)
, and has multiplicity 0 otherwise.

When n = 1, this recoversWaldspurger’s celebrated results for
Mp2(A).

Theorem (essentially in [Ikeda–Yamana])
If πv is non-supercuspidal for all v ∤ ∞, and kv > n

2 for all v | ∞, then
the conjecture holds true.
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Main results

Theorem in progress (L.)
The conjecture holds true if the cuspidal automorphic spectrum is
replaced by the discrete L2-automorphic one.

If kv > n
2 for all v | ∞, thenΠ±

v are tempered (in fact L2), so
L2cusp = L2disc (a well-known result of Wallach).

Themain ingredients include:

• Arthur packets forMp2n (local);

• Arthur’s multiplicity formula forMp2n (global);

• multiplicity-one ofΠ±
v in the Arthur packetΠψv , where

ψ := ϕ0 ⊠ r(n) : LF × SL(2,C) → Sp2n(C).

They are also works in progress, nearing completion IMAO.
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Arthur’s conjectures predict (among others)

L2disc(Sp2n(F)\ Mp2n(A)) =
⊕̂

ξ
L2ξ, ξ : “discrete” Arthur parameters.

This decomposition is already done by Gan–Ichino (2018).

• If
⊗ ′

v Π
ϵv
v occurs in L2disc, it must occur in L

2
ψ by consideration of

Satake parameters.

• One can then apply Arthur’s multiplicity formula forMp2n (in
progress) + multiplicity-one (see below) to conclude. The appearance
of ϵ

( 1
2 ,π

)
here is ametaplectic feature here!

When v ∤ ∞, multiplicity-one ofΠ±
v inΠψv is part of the general

properties of Arthur packets, asΠ±
v are defined as Langlands

quotients.

⇝ Remains to showmultiplicity-one for v | ∞. A real problem.



Ikeda’s lifting Generalization Yamana’s conjecture Main results References

Sketch of the strategy overR (in progress)

Remark
Assuming that a theory à la Adams–Johnson of (certain) Arthur
packets ofMp2n(R) exists, thenmultiplicity-one will follow.

Instead, we try an ad hoc approach as follows.

• Step 1 (k > n
2 ): Globalize toQ, combine the multiplicity formula

with the results of Ikeda–Yamana to get multiplicity one.

• Step 2 (k ∈ Z⩾1): Use Zuckerman’s translation functor.
1. Translation commutes with transfer — imitate the arguments of
Moeglin–Renard.

2. Translation preserves highest/lowest weight modules (look at Verma
modules).

3. No loss of information in translation: use the equi-singularity of the
infinitesimal characters in question.

In this way, we hope to deduce multiplicity-one from Step 1.
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Thanks for your attention
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