Ext-vanishing result for Gan-Gross-Prasad model

Rui Chen

June 21, 2023

Branching law

F : p-adic field, G : group over F, and H : closed subgroup of G.

Branching law: would like to study:

$$
\operatorname{Hom}_{H}(\pi, \nu),
$$

where π : irred rep of G; ν : character (or some special rep) of H.
Examples: ($\mathrm{B}=$ Bessel case):
$(G, H, \nu)=\left(\mathrm{SO}_{n} \times \mathrm{SO}_{n+1}, \mathrm{SO}_{n}, \mathbb{C}\right)$ or $\left(\mathrm{U}_{n} \times \mathrm{U}_{n+1}, \mathrm{U}_{n}, \mathbb{C}\right)$.
$(\mathrm{FJ}=$ Fourier-Jacobi case $):(G, H, \nu)=\left(\mathrm{Sp}_{2 n} \times \widetilde{\mathrm{Sp}_{2 n}}, \widetilde{\mathrm{Sp}_{2 n}}, \omega_{\psi_{F}}\right)$ or $\left(\mathrm{U}_{n} \times \mathrm{U}_{n}, \mathrm{U}_{n}, \omega_{\psi_{F}, \mu}\right)$.

Local Gan-Gross-Prasad conjecture

The local GGP conjecture asserts:
(1) multiplicity one in generic L-packet: for generic L-parameter ϕ of $G, \exists!\pi$ in Vogan L-packet Π_{ϕ}, s.t.

$$
\operatorname{Hom}_{H}(\pi, \nu) \neq 0,
$$

hence of dimension 1 ;
(2) recipe of π given by explicit epsilon factors.

It was proved:
(B): local trace formula (Waldspurger, Beuzart-Plessis, Zhilin Luo,

Hang Xue, Cheng Chen, ...)
(FJ): theta correspondence (Gan-Ichino, Atobe, Hang Xue...)

Geometric multiplicity

Waldspurger's geometric multiplicity formula:

$$
m_{g e o}(\pi, \sigma)=\sum_{T \in \mathcal{T}}|W(H, T)|^{-1} \int_{T} c_{\pi}(t) c_{\sigma}(t) D^{H}(t) \Delta(t) d t
$$

for admissible π of SO_{n+1} and σ of SO_{n}. He showed that:

- this integral is absolutely convergent;
- if both π and σ are irred tempered, or at least one of them is s.c., then

$$
\operatorname{dim} \operatorname{Hom}_{H}(\pi \boxtimes \sigma, \nu)=m_{g e o}(\pi, \sigma)
$$

Question: What is $m_{\text {geo }}(\pi, \sigma)$ when π or σ is non-tempered?

Observation

Observe that the geometric multiplicity behaves nicely under the short exact sequence, in the following sense:

If there is a short exact sequence

$$
0 \longrightarrow \pi^{\prime} \longrightarrow \pi \longrightarrow \pi^{\prime \prime} \longrightarrow 0
$$

then

$$
m_{g e o}(\pi, \sigma)=m_{g e o}\left(\pi^{\prime}, \sigma\right)+m_{g e o}\left(\pi^{\prime \prime}, \sigma\right)
$$

Likewise, if there is a short exact sequence

$$
0 \longrightarrow \sigma^{\prime} \longrightarrow \sigma \longrightarrow \sigma^{\prime \prime} \longrightarrow 0
$$

then

$$
m_{g e o}(\pi, \sigma)=m_{g e o}\left(\pi, \sigma^{\prime}\right)+m_{g e o}\left(\pi, \sigma^{\prime \prime}\right)
$$

Homological branching law (a.k.a. Higher branching law)

Prasad's idea: think of the branching as a functor

$$
\operatorname{Hom}_{H}(-, \nu): \mathcal{R}(G) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

consider its derived functors \& Euler-Poincaré characteristic:

$$
\mathrm{EP}_{H}(-, \nu)=\sum_{i}(-1)^{i} \operatorname{dim} \operatorname{Ext}_{H}^{i}(-, \nu)
$$

Theorem (Bernstein)

If $i>\operatorname{rank} H$, then $\operatorname{Ext}_{H}^{i}(\pi, \nu)=0$ for any smooth $\pi \in \mathcal{R}(G)$.

First task: Check that $\mathrm{EP}_{H}(-, \nu)$ is well-defined for π admissible rep of G, i.e. $\operatorname{Ext}_{H}^{i}(\pi, \nu)$ are finite dimensional.

Finite dimensionality

Theorem (Prasad)

For (B), all Ext-groups

$$
\operatorname{Ext}_{H}^{i}(\pi, \nu)
$$

of admissible reps π of G are finite dimensional. Therefore $\mathrm{EP}_{H}(\pi, \nu)$ is well-defined.

Relevant result:
Aizenbud-Sayag: Homological multiplicities in representation theory of p-adic groups.

Wen-Wei Li: Higher localizations and higher branching laws.

Conjectures of Prasad

Conjecture (Prasad)

1 For any admissible reps π of SO_{n+1} and σ of SO_{n}, we have

$$
\mathrm{EP}_{H}(\pi \boxtimes \sigma, \nu)=m_{\text {geo }}(\pi, \sigma)
$$

2 If both π and σ are tempered, then for any $i>0$ we have

$$
\operatorname{Ext}_{H}^{i}(\pi \boxtimes \sigma, \nu)=0 .
$$

Recently in his IHES lecture note, Prasad proved: (2) implies (1).
Our result: (2) holds (arXiv:2303.12619).

Sketch of the proof of (2) implies (1)

Let π be a standard module of SO_{n+1}, namely

$$
\pi=\tau_{1}|\cdot|^{s_{1}} \times \cdots \times \tau_{r}|\cdot|^{s_{r}} \rtimes \pi_{0}
$$

where τ_{i} tempered rep of GL, π_{0} tempered rep of $\mathrm{SO}_{2 m+1}$, and

$$
s_{1}>\cdots>s_{r}>0
$$

Likewise, let σ be a standard module of $\mathrm{SO}_{2 n}$. Mimic an argument of Mœglin-Waldspurger, can show:

■ $m_{\text {geo }}(\pi, \sigma)=m_{\text {geo }}\left(\pi_{0}, \sigma_{0}\right)$;
■ $\operatorname{Ext}_{H}^{i}(\pi, \sigma) \simeq \operatorname{Ext}_{\text {Bes }}^{i}\left(\pi_{0}, \sigma_{0}\right)$ for any $i \geq 0$.
Combining these get (1) for standard modules. Then use bilinear property of both sides.

Remarks for General linear groups

For GL an EP-formula has been established by Prasad himself:

Theorem (Prasad)

Let π be an admissible rep of GL_{n+1} and σ of GL_{n}. Then

$$
\mathrm{EP}_{\mathrm{GL}_{n}}(\pi, \sigma)=\operatorname{dim} \mathrm{Wh}(\pi) \cdot \operatorname{dim} \mathrm{Wh}(\sigma)
$$

The similar Ext-vanishing result has been established by Chan:
Theorem (K. Y. Chan)
Let π be a generic rep of GL_{n+1} and σ of GL_{n}. Then

$$
\operatorname{Ext}_{\mathrm{GL}_{n}}^{i}(\pi, \sigma)=0 \quad \text { for any } i>0
$$

Idea of the proof of (2)

Idea: Embed tempered representations into some suitably chosen "acyclic" representations, and then using the standard dim shifting.

In this talk we shall use an example to illustrate the proof. Let:
■ $G_{n}=\mathrm{SO}_{n+1, n}$, and π_{n} the unique irred subrep of

$$
|\cdot|^{n-\frac{1}{2}} \times|\cdot|^{n-\frac{3}{2}} \times \cdots \times|\cdot|^{\frac{1}{2}} \rtimes \mathbb{1}_{\mathrm{SO}_{1}}
$$

π_{n} is a d.s. (with L-parameter $S_{2 n}$);
■ $H_{n}=\mathrm{SO}_{n, n}$, and σ_{n} the unique irred subrep of

$$
|\cdot|^{n-1} \times\left.|\cdot|\right|^{n-2} \times \cdots \times|\cdot|^{1} \rtimes \sigma_{1}
$$

where σ_{1} is the trivial character of $\mathrm{SO}_{1,1} \simeq F^{\times} . \sigma_{n}$ is a d.s. when $n>1$ (with L-parameter $\mathbb{1}+S_{2 n-1}$).
Goal: Show that $\operatorname{Ext}_{H_{n}}^{i}\left(\pi_{n}, \sigma_{n}\right)=0$ for any $i>0$.

Example

Step 1: Let χ : an unitary character of GL_{1}, not unramified. Using the Mackey theory easy to see

$$
\operatorname{Ext}_{H_{n}}^{i}\left(\pi_{n}, \sigma_{n}\right) \simeq \operatorname{Ext}_{G_{n}}^{i}\left(\chi \rtimes \sigma_{n}, \pi_{n}\right) \quad \text { for any } i>0
$$

Step 2: Note that there is an exact sequence

$$
0 \longrightarrow \chi \rtimes \sigma_{n} \longrightarrow|\cdot|^{n-1} \rtimes\left(\chi \rtimes \sigma_{n-1}\right) \longrightarrow \chi \rtimes K_{n} \longrightarrow 0,
$$

where K_{n} is the unique irred quotient of $|\cdot|^{n-1} \rtimes \sigma_{n-1}$. If one can show that

$$
\operatorname{Ext}_{G_{n}}^{i}\left(|\cdot|^{n-1} \rtimes\left(\chi \rtimes \sigma_{n-1}\right), \pi_{n}\right)=0
$$

for any $i>0$, then applying the functor $\operatorname{Hom}_{G_{n}}\left(-, \pi_{n}\right)$, one gets

$$
\operatorname{Ext}_{G_{n}}^{i}\left(\chi \rtimes \sigma_{n}, \pi_{n}\right) \simeq \operatorname{Ext}_{G_{n}}^{i+1}\left(\chi \rtimes K_{n}, \pi_{n}\right) \quad \text { for any } i>0
$$

Example

Step 2 (continued): On the other hand, using the MVW and contragredient functor one gets

$$
0 \longrightarrow \chi \rtimes K_{n} \longrightarrow|\cdot|^{1-n} \rtimes\left(\chi \rtimes \sigma_{n-1}\right) \longrightarrow \chi \rtimes \sigma_{n} \longrightarrow 0 .
$$

If one can also show that

$$
\operatorname{Ext}_{G_{n}}^{i}\left(|\cdot|^{1-n} \rtimes\left(\chi \rtimes \sigma_{n-1}\right), \pi_{n}\right)=0
$$

for any $i>0$, then the functor $\operatorname{Hom}_{H_{n}}\left(-, \sigma_{n}\right)$ yeilds

$$
\operatorname{Ext}_{G_{n}}^{i}\left(\chi \rtimes K_{n}, \pi_{n}\right) \simeq \operatorname{Ext}_{G_{n}}^{i+1}\left(\chi \rtimes \sigma_{n}, \pi_{n}\right) \quad \text { for any } i>0
$$

These imply that $\left\{\operatorname{Ext}_{G_{n}}^{i}\left(\chi \rtimes \sigma_{n}, \pi_{n}\right)\right\}_{i>0}$ is periodic, hence vanish.

Example

Step 3: Let $x \in\{n-1,1-n\}$. As explicated in Step 2, it suffices to show that

$$
\operatorname{Ext}_{G_{n}}^{i}\left(|\cdot|^{x} \rtimes\left(\chi \rtimes \sigma_{n-1}\right), \pi_{n}\right)=0
$$

for any $i>0$. Analyze it using the Mackey theory:

- contribution of the closed orbit:

$$
\operatorname{Ext}_{G_{n}}^{i}\left(|\cdot|^{x+\frac{1}{2}} \rtimes\left(\left.\chi \rtimes \sigma_{n-1}\right|_{\mathrm{SO}_{2 n-1}}\right), \pi_{n}\right),
$$

which is zero by computing Jacquet modules of π_{n};

- contribution of the open orbit:

$$
\operatorname{Ext}_{H_{n}}^{i}\left(\pi_{n}, \chi \rtimes \sigma_{n-1}\right)
$$

Thus the Goal is reduced to

$$
\operatorname{Ext}_{H_{n}}^{i}\left(\pi_{n}, \chi \rtimes \sigma_{n-1}\right)=0 \quad \text { for any } i>0
$$

Example

Step 4: Repeating Step 1-3. Eventually the Goal is reduced to

$$
\operatorname{Ext}_{H_{n}}^{i}\left(\pi_{n}, P s_{2 n, \chi}\right)=0 \quad \text { for any } i>0,
$$

where $P s_{2 n, \chi}=\chi \times \cdots \times \chi \rtimes \mathbb{1}_{\mathrm{SO}_{0}}$ is an unitary p.s. of H_{n}.
Step 5: Note that there exists an exact sequence

$$
0 \longrightarrow \pi_{n} \longrightarrow|\cdot|^{n-\frac{1}{2}} \rtimes \pi_{n-1} \longrightarrow Q_{n} \longrightarrow 0
$$

where Q_{n} is the unique irred quotient of $|\cdot|^{n-\frac{1}{2}} \rtimes \pi_{n-1}$. Repeating Step 1-4. Eventually the Goal is reduced to

$$
\operatorname{Ext}_{H_{n}}^{i}\left(P s_{2 n+1, \mu}, P s_{2 n, \chi}\right)=0 \quad \text { for any } i>0
$$

where $P s_{2 n+1, \mu}=\mu \times \cdots \times \mu \rtimes \mathbb{1}_{\mathrm{SO}_{1}}$ is an unitary p.s. of G_{n}.

Example

Step 6: The desired conlusion for unitary p.s. can be shown easily using the Mackey theory:

$$
\begin{aligned}
\operatorname{Ext}_{H_{n}}^{i}\left(P s_{2 n+1, \mu}, P s_{2 n, \chi}\right) & \simeq \operatorname{Ext}_{G_{n-1}}^{i}\left(P s_{2 n, \chi} \vee P s_{2 n-1, \mu}\right) \\
& \simeq \operatorname{Ext}_{H_{n-1}}^{i}\left(P s_{2 n-1, \mu}, P s_{2 n-2, \chi}\right) \\
& \cdots \\
& \simeq \operatorname{Ext}_{H_{0}}^{i}\left(P s_{1, \mu}, P s_{0, \chi}\right)=0 .
\end{aligned}
$$

This completes the proof of the Goal.

Fourier-Jacobi case

One can also consider the Ext-analogue for (FJ).
Recall the proof of (FJ): following Gan-Ichino, Atobe considered:

the associated seesaw identity reads:

$$
\operatorname{Hom}_{\mathrm{Sp}_{2 n}}\left(\Theta_{\psi_{F}}(\sigma) \boxtimes \omega_{\psi_{F}-1}, \pi\right) \simeq \operatorname{Hom}_{\mathrm{SO}_{2 n+1}}\left(\Theta_{\psi_{F}}(\pi), \sigma\right)
$$

for irred reps π of $\mathrm{Sp}_{2 n}$ and σ of $\mathrm{SO}_{2 n+1}$.

Fourier-Jacobi case

In the Ext-setting:

- one can replace the seesaw identity by two spectral sequences, both convergent to the same thing;
- when π and σ are tempered, one can show these spectral sequences degenerate at E_{2}-pages.
Upshot: if π and σ are tempered, then for any $i \geq 0$

$$
\operatorname{Ext}_{\mathrm{Sp}_{2 n}}^{i}\left(\Theta_{\psi_{F}}(\sigma) \boxtimes \omega_{\psi_{F}-1}, \pi\right) \simeq \operatorname{Ext}_{\mathrm{SO}_{2 n+1}}^{i}\left(\Theta_{\psi_{F}}(\pi), \sigma\right)
$$

Theorem

Let $(G, H, \nu)=\left(\mathrm{Sp}_{2 n} \times \widetilde{\mathrm{Sp}}_{2 n}, \widetilde{\mathrm{Sp}}_{2 n}, \omega_{\psi_{F}}\right)$, and $\widetilde{\pi}$ a tempered rep of G. Then for any $i>0$ we have

$$
\operatorname{Ext}_{H}^{i}(\widetilde{\pi}, \nu)=0
$$

Twisted Fourier-Jacobi case

One can also consider the Ext-analogue for twisted FJ.

Biquadratic extension:

Let W be a Hermitian space w.r.t. E / F. One has

$$
\mathrm{U}(W)=\mathrm{U}(W)(F) \hookrightarrow \mathrm{U}\left(W_{K}\right)=\mathrm{U}(W)(K)
$$

The twisted GGP problem considers
$\operatorname{Hom}_{\mathrm{U}(W)}\left(\pi, \omega_{\psi_{F}, \mu}\right) \quad$ for $\pi \in \operatorname{Irr} \mathrm{U}\left(W_{K}\right)$.

Twisted Fourier-Jacobi case

■ When $E=K$: using the similar argument, G-G-P showed that for any tempered rep Π of $\mathrm{U}\left(W_{K}\right) \simeq \mathrm{GL}(W)$,

$$
\operatorname{Ext}_{\mathrm{U}(W)}^{i}\left(\Pi, \omega_{\psi_{F}, \mu}\right)=0 \quad \text { for any } i>0
$$

■ When $E \neq K$: still working in progress...

Conjecture for spherical varieties

Let (G, H) : spherical pair, $X=G / H$, and χ : character of H.
X is said to be tempered (resp. strongly tempered), if all the matrix coefficients of d.s. (resp. tempered) reps are integrable over $H / A_{G, H}$.

Conjecture (Ext-vanishing)

Suppose that X is tempered (resp. strongly tempered), and $A_{G, H}=1$. Then for any d.s. (resp. tempered) rep π of G, we have

$$
\operatorname{Ext}_{H}^{i}(\pi, \chi)=0
$$

According to Prasad, this is some kind of "Kodaira vanishing thm" for spherical varieties.

Conjecture for spherical varieties

Moreover, in some recent work of C. Wan and Wan-Zhang, they defined the geometric multiplicity $m_{X, g e o}(\pi, \chi)$, and showed that

$$
\operatorname{dim} \operatorname{Hom}_{H}(\pi, \chi)=m_{X, g e o}(\pi, \chi)
$$

for tempered rep π in the strongly tempered case.

Conjecture (EP-formula)

One can properly extend the definition $m_{X, g e o}(-, \chi)$ to all admissible rep π of G, such that

$$
\mathrm{EP}_{H}(\pi, \chi)=m_{X, \text { geo }}(\pi, \chi)
$$

According to Prasad, this is some kind of "Riemann-Roch thm" for spherical varieties.

Thank you for your attention!

