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Finiteness property
In the representation theory of reductive Lie algebras/groups, there are
many fundamental finiteness properties, e.g.

1. Length of a Verma module <∞
2. Length of a principal series representation <∞
3. Harish-Chandra’s admissibility theorem

dim HomK (F , V ) <∞ (V : irreducible (g, K )-module, F ∈ K̂ )
4. | {irreducible (g, K )-modules with infinitesimal character λ} / ≃
| <∞

Topic in this talk
Each quantity is bounded with respect to the parameter (1. highest
weight, 2. (σ, λ) ∈ M̂ × a∗, 3. V , 4. infinitesimal character λ).
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Motivation: Boundedness property

1. suphighest weight(Length of a Verma module) <∞
2. sup(σ,λ)∈M̂×a∗(Length of a principal series representation) <∞

3. supV dim HomK (F , V ) <∞
(V : irr. (g, K )-module, F ∈ K̂ )

4. supλ | {irr. (g, K )-modules with inf. char. λ} / ≃ | <∞

cf.
1. W. Soergel’s study on blocks of the BGG category O
2. Kobayashi–Oshima ’13 Appendix
3. Harish-Chandra’s subquotient theorem
4. Langlands’ and Knapp–Zuckerman’s classifications,
Beilinson–Bernstein’s classification of K -equivariant D-modules
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Motivation: U(g)K -module

• G : connected real reductive Lie group
• K : maximal compact subgroup of G
• g := Lie(G)⊗R C

Then
• U(g)K -module HomK (F , V ) is irreducible or zero.

(F ∈ K̂ , V : irr. (g, K )-module)
(Application: Harish-Chandra’s subquotient theorem, theta lift for
compact dual pair)

irreducible or zero = length ≤ 1 (boundedness!)
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Goal

Goal
Want to find a good framework that can handle these boundedness
properties.

Application: uniformly bounded multiplicity theorem
• branching problem of unitary highest weight module (T. Kobayashi

’97, ’08)
• Kobayashi’s conjecture (’11) for Aq(λ) (q: ‘virtually symmetric

type’)
• Kobayashi–Oshima’s uniformly bounded theorem (’13)
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What we want

• g: complex reductive Lie algebra

Want to define
• Modub(gI) ⊂

∏
i∈I Mod(g): category of uniformly bounded

families of g-modules (I: index set)
satisfying the following conditions:

1. (Vi)i∈I ∈ Modub(gI)⇒ supi Leng(Vi) <∞.
2. For 0→ L→ M → N → 0 (exact sequence in

∏
i∈I Mod(g)),

L, N ∈ Modub(gI)⇔ M ∈ Modub(gI).

3. Any family of Harish-Chandra modules (or objects in the BGG
category O) with bounded lengths is uniformly bounded.

4. The parabolic induction functor U(g)⊗U(p) (·) : Mod(l)→ Mod(g)
and the Zuckerman derived functors DjΓK

M(·) preserve uniform
boundedness.

5. If M ∈ Modub(gI) and (Fi)i∈I ∈
∏

i∈I Mod(g) with
supi dim(Fi) <∞, then (Mi ⊗ Fi)i∈I ∈ Modub(gI).

Len(·) means the length of a module.



Introduction Review: D-module Uniformly bounded family of D-modules Uniformly bounded family of g-modules Application

What we want

• g: complex reductive Lie algebra

Want to define
• Modub(gI) ⊂

∏
i∈I Mod(g): category of uniformly bounded

families of g-modules (I: index set)
satisfying the following conditions:

1. (Vi)i∈I ∈ Modub(gI)⇒ supi Leng(Vi) <∞.
2. For 0→ L→ M → N → 0 (exact sequence in

∏
i∈I Mod(g)),

L, N ∈ Modub(gI)⇔ M ∈ Modub(gI).

3. Any family of Harish-Chandra modules (or objects in the BGG
category O) with bounded lengths is uniformly bounded.

4. The parabolic induction functor U(g)⊗U(p) (·) : Mod(l)→ Mod(g)
and the Zuckerman derived functors DjΓK

M(·) preserve uniform
boundedness.

5. If M ∈ Modub(gI) and (Fi)i∈I ∈
∏

i∈I Mod(g) with
supi dim(Fi) <∞, then (Mi ⊗ Fi)i∈I ∈ Modub(gI).

Len(·) means the length of a module.



Introduction Review: D-module Uniformly bounded family of D-modules Uniformly bounded family of g-modules Application

What we want

• g: complex reductive Lie algebra

Want to define
• Modub(gI) ⊂

∏
i∈I Mod(g): category of uniformly bounded

families of g-modules (I: index set)
satisfying the following conditions:

1. (Vi)i∈I ∈ Modub(gI)⇒ supi Leng(Vi) <∞.
2. For 0→ L→ M → N → 0 (exact sequence in

∏
i∈I Mod(g)),

L, N ∈ Modub(gI)⇔ M ∈ Modub(gI).

3. Any family of Harish-Chandra modules (or objects in the BGG
category O) with bounded lengths is uniformly bounded.

4. The parabolic induction functor U(g)⊗U(p) (·) : Mod(l)→ Mod(g)
and the Zuckerman derived functors DjΓK

M(·) preserve uniform
boundedness.

5. If M ∈ Modub(gI) and (Fi)i∈I ∈
∏

i∈I Mod(g) with
supi dim(Fi) <∞, then (Mi ⊗ Fi)i∈I ∈ Modub(gI).

Len(·) means the length of a module.



Introduction Review: D-module Uniformly bounded family of D-modules Uniformly bounded family of g-modules Application

What we want

• g: complex reductive Lie algebra

Want to define
• Modub(gI) ⊂

∏
i∈I Mod(g): category of uniformly bounded

families of g-modules (I: index set)
satisfying the following conditions:

1. (Vi)i∈I ∈ Modub(gI)⇒ supi Leng(Vi) <∞.
2. For 0→ L→ M → N → 0 (exact sequence in

∏
i∈I Mod(g)),

L, N ∈ Modub(gI)⇔ M ∈ Modub(gI).

3. Any family of Harish-Chandra modules (or objects in the BGG
category O) with bounded lengths is uniformly bounded.

4. The parabolic induction functor U(g)⊗U(p) (·) : Mod(l)→ Mod(g)
and the Zuckerman derived functors DjΓK

M(·) preserve uniform
boundedness.

5. If M ∈ Modub(gI) and (Fi)i∈I ∈
∏

i∈I Mod(g) with
supi dim(Fi) <∞, then (Mi ⊗ Fi)i∈I ∈ Modub(gI).

Len(·) means the length of a module.



Introduction Review: D-module Uniformly bounded family of D-modules Uniformly bounded family of g-modules Application

What we want

• g: complex reductive Lie algebra

Want to define
• Modub(gI) ⊂

∏
i∈I Mod(g): category of uniformly bounded

families of g-modules (I: index set)
satisfying the following conditions:

1. (Vi)i∈I ∈ Modub(gI)⇒ supi Leng(Vi) <∞.
2. For 0→ L→ M → N → 0 (exact sequence in

∏
i∈I Mod(g)),

L, N ∈ Modub(gI)⇔ M ∈ Modub(gI).

3. Any family of Harish-Chandra modules (or objects in the BGG
category O) with bounded lengths is uniformly bounded.

4. The parabolic induction functor U(g)⊗U(p) (·) : Mod(l)→ Mod(g)
and the Zuckerman derived functors DjΓK

M(·) preserve uniform
boundedness.

5. If M ∈ Modub(gI) and (Fi)i∈I ∈
∏

i∈I Mod(g) with
supi dim(Fi) <∞, then (Mi ⊗ Fi)i∈I ∈ Modub(gI).

Len(·) means the length of a module.



Introduction Review: D-module Uniformly bounded family of D-modules Uniformly bounded family of g-modules Application

What we want

• g: complex reductive Lie algebra

Want to define
• Modub(gI) ⊂

∏
i∈I Mod(g): category of uniformly bounded

families of g-modules (I: index set)
satisfying the following conditions:

1. (Vi)i∈I ∈ Modub(gI)⇒ supi Leng(Vi) <∞.
2. For 0→ L→ M → N → 0 (exact sequence in

∏
i∈I Mod(g)),

L, N ∈ Modub(gI)⇔ M ∈ Modub(gI).

3. Any family of Harish-Chandra modules (or objects in the BGG
category O) with bounded lengths is uniformly bounded.

4. The parabolic induction functor U(g)⊗U(p) (·) : Mod(l)→ Mod(g)
and the Zuckerman derived functors DjΓK

M(·) preserve uniform
boundedness.

5. If M ∈ Modub(gI) and (Fi)i∈I ∈
∏

i∈I Mod(g) with
supi dim(Fi) <∞, then (Mi ⊗ Fi)i∈I ∈ Modub(gI).

Len(·) means the length of a module.



Introduction Review: D-module Uniformly bounded family of D-modules Uniformly bounded family of g-modules Application

How to define

family of g-modules

localization
��

family of twisted D-modules on G/B

global section Γ

OO

affine open covering
+trivialization of twists

��
family of D-modules on affine varieties

Čech complex

OO

closed embedding
+Kashiwara equivalence

��
family of D-modules on affine spaces Cn

OO

global section Γ
��

family of DCn-modules (DCn : Weyl algebra)

localization

OO
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TDO
Recall the notion of TDOs (see e.g. Kashiwara ’89).
For a (complex quasi-projective) smooth variety U,
• OU : structure sheaf of U
• DU : sheaf of algebras of (non-twisted) differential operators

Definition
Let AX be a sheaf of algebras on a smooth variety X . We say that AX
is an algebra of twisted differential operators (TDO) if

1. a monomorphism OX ↪→ AX is given,
2. there are an open covering X =

∪
i Ui and isomorphisms

φi : AX |Ui ≃ DUi with φi |OUi
= id.

Remark
In many literatures, TDO is not necessarily assumed to be locally trivial
in the Zariski/étale topology. For the definition of uniformly bounded
families, we need some local triviality (Zariski/étale).
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Categories of twisted D-modules
AX has a canonical order filtration induced from the isomorphisms
AX |Ui ≃ DUi .

grAX ≃ π∗OT ∗X , π : T ∗X → X projection

For an AX -module M with a good filtration (⇒ coherent),

Ch(M) := supp(OT ∗X ⊗π−1π∗OT∗X
π−1gr(M)) ⊂ T ∗X .

Definition
M is said to be holonomic if dim Ch(M) ≤ dim(X ) (i.e. M = 0 or
dim Ch(M) = dim(X ))

(A holonomic AX -module has finite length.)
• Modh(AX ): category of holonomic AX -modules
• Db

h (AX ) ⊂ Db(AX ): full subcategory consisting of complexes M•

such that H i(M•) ∈ Modh(AX )
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Direct image and inverse image

• Aut(DX ) ≃ Z(X ) (the space of closed 1-forms)

For ω ∈ Z(X ), set

Aω(T ) = T − ω(T ) (T ∈ TX ).

Aω extends uniquely to an automorphism of DX .
Let f : Y → X be a morphism between smooth varieties.

(pull back) f # : Aut(DU)→ Aut(Df −1(U)) (U ⊂ X open)

• f #AX : TDO on Y (‘pull-back’ of AX )
• f #: functor of the categories of TODs

(direct image) Df+ : Db
h (f #AX )→ Db

h (AX )
(inverse image) Lf ∗ : Db

h (AX )→ Db
h (f #AX ).

These functors are local on X .
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Multiplicities
Review Bernstein’s work (’71, ’72).
• DCn := Γ(DCn): algebra of differential operators with polynomial

coefficients

For a finitely generated DCn-module M, the multiplicity m(M) and the
dimension d(M) are defined by

dim(F iM) ∼ m(M)
d(M)! id(M) (i →∞),

where (F iM)i≥0 is a good filtration of M with respect to the Bernstein
filtration of DCn .

Bernstein filtration:

F iDCn =
⊕

|α|+|β|≤i
Czα ∂β

∂zβ
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Multiplicity and length

Fact
Let L, M and N be finitely generated DCn-module.

1. If M ̸= 0, then d(M) ≥ n.

d(M) ≤ n⇔ DCn ⊗DCn M is holonomic.

2. 0→ L→ M → N → 0 (exact)

d(M) = max(d(L), d(N)),
m(M) = m(L) + m(N) (if d(L) = d(N)).

3. d(M) ≤ n⇒ LenDCn (M) ≤ m(M).

For M• ∈ Db
h (DCn), set

m(M•) :=
∑

i
m(Γ(H i(M•))).

Then we have

LenDCn (M) ≤ m(M) (M∈ Modh(DCn)).
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Multiplicity and functors

Proposition (Derived version of Bernstein’s estimate)
Let f : Cn → Cm be a morphism of varieties. Set d := max(1, deg(f )).
For M• ∈ Db

h (DCn), N • ∈ Db
h (DCm), we have

m(Df+(M•)) ≤ dn+mm(M•),
m(Lf ∗(N •)) ≤ dn+mm(N •).

f is decomposed as

Cn i−→ Cn ⊕ Cm f ′
−→ Cn ⊕ Cm p−→ Cm,

i(x) = (x , 0), f ′(x , y) = (x , f (x) + y), p(x , y) = y .

If m = 1,

Γ(D0i+(M)) ≃ Γ(M) ⊠DC/zn+1DC (M∈ Modh(DCn)),
Γ(L0i∗(M)) ≃ Γ(M)/zn+1Γ(M) (M∈ Modh(DCn+1)),

Γ(D0p+(M)) ≃ Γ(M)/ ∂

∂zn+1
Γ(M) (M∈ Modh(DCn+1)),

Γ(L0i∗(M)) ≃ Γ(M) ⊠ Γ(OC) (M∈ Modh(DCn)).
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Affine case: multiplicity

• X : smooth affine variety
• ι : X ↪→ Cn: closed embedding

For M• ∈ Db
h (DX ), set

mι(M•) := m(Dι+(M•)).

By Kashiwara’s equivalence,

H0 ◦ Dι+ : Modh(DX )→ Modι(X)
h (DCn)

gives an equivalence of categories.
(N ∈ Modι(X)

h (DCn)⇔ supp(N ) ⊂ ι(X ) and N ∈ Modh(DCn))
Then we have

LenDX (M) ≤ mι(M).
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Affine case: functors

Proposition
Let f : X → Y be a morphism between affine smooth varieties. Fix
closed embeddings ι : X ↪→ Cn and ι′ : Y ↪→ Cm. Then ∃C > 0 s.t.
∀M• ∈ Db

h (DX ), N • ∈ Db
h (DY ),

mι′(Df+(M•)) ≤ C ·mι(M•),
mι(Lf ∗(N •)) ≤ C ·mι′(N •).

Note that f extends to a morphism f̃ : Cn → Cm:

X f //

ι

��

Y
ι′

��
Cn f̃ // Cm.

If X = Y and f = id, then

C−1 ·mι′(M•) ≤ mι(M•) ≤ C ·mι′(M•).
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Naive solution

• AX ,Λ := (AX ,λ)λ∈Λ: family of TDOs on a smooth variety X

1. finite affine open covering X =
∪

i Ui

2. closed embeddings ιi : Ui → Cni

3. local trivializations Φi ,λ : AX ,λ|Ui
≃−→ DUi

If the above data is given, we can define ‘multiplicities’

m(Mλ) :=
∑

i
mιi (Mλ|Ui ) ((Mλ)λ∈Λ ∈

∏
λ

Modh(AX ,λ)).

The values depend on the data 1, 2, 3. The boundedness of m(Mλ)
(λ ∈ Λ) does not depend on the data 1, 2, and does depend on the
data 3.
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Twist and multiplicity
Let X be an affine smooth variety. For ω ∈ Z(X )(≃ Aut(DX )) and
M• ∈ Db

h (DX ),
• (M•)ω: complex twisted by Aω ∈ Aut(DX )

Proposition
Let ι : X ↪→ Cn be a closed embedding and W ⊂ Z(X ) a
finite-dimensional subspace. Then ∃C > 0 s.t. ∀M• ∈ Db

h (DX ),
ω ∈W

mι((M•)ω) ≤ C ·mι(M).

Remark
dim(W ) <∞ is essential. In fact, for ω ∈ Z(C) with
Aω(d/dz) = d/dz − zn, we have m(C[z ]ω) = max(n, 1).
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Definition: bounded trivialization

• AX ,Λ := (AX ,λ)λ∈Λ: family of TDOs on a smooth variety X

Definition
(U , Φ): trivialization of AX ,Λ

def⇐⇒
• U is an open covering of X
• ΦU

λ : AX ,λ|U
≃−→ DU (U ∈ U , λ ∈ Λ)

Definition
(U , Φ), (V, Ψ): trivializations of AX ,Λ,
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Definition: uniformly bounded family

Definition
An equivalence class of bounded trivialization is called a bornology of
AX ,Λ.

Definition
Let B be a bornology of AX ,Λ and fix (U , Φ) ∈ B such that U is an
affine open covering. For M∈

∏
λ Modh(AX ,λ),

M is uniformly bounded w.r.t. B def⇐⇒
mι(Mλ|U) is bounded on Λ (∀U ∈ U , closed embedding ι : U ↪→ Cn).

The definition does not depend on the choice of (U , Φ) and ι.
• Modub(AX ,Λ,B): full subcategory of

∏
λ Modh(AX ,λ) consisting

of uniformly bounded families
• Db

ub(AX ,Λ,B): full subcategory of
∏

λ Db
h (AX ,λ) consisting of

complexes with H i(M•) ∈ Modub(AX ,Λ,B), H i(M•) = 0
(|i | >> 0)



Introduction Review: D-module Uniformly bounded family of D-modules Uniformly bounded family of g-modules Application

Definition: uniformly bounded family

Definition
An equivalence class of bounded trivialization is called a bornology of
AX ,Λ.

Definition
Let B be a bornology of AX ,Λ and fix (U , Φ) ∈ B such that U is an
affine open covering. For M∈

∏
λ Modh(AX ,λ),

M is uniformly bounded w.r.t. B def⇐⇒
mι(Mλ|U) is bounded on Λ (∀U ∈ U , closed embedding ι : U ↪→ Cn).

The definition does not depend on the choice of (U , Φ) and ι.
• Modub(AX ,Λ,B): full subcategory of

∏
λ Modh(AX ,λ) consisting

of uniformly bounded families
• Db

ub(AX ,Λ,B): full subcategory of
∏

λ Db
h (AX ,λ) consisting of

complexes with H i(M•) ∈ Modub(AX ,Λ,B), H i(M•) = 0
(|i | >> 0)



Introduction Review: D-module Uniformly bounded family of D-modules Uniformly bounded family of g-modules Application

Definition: uniformly bounded family

Definition
An equivalence class of bounded trivialization is called a bornology of
AX ,Λ.

Definition
Let B be a bornology of AX ,Λ and fix (U , Φ) ∈ B such that U is an
affine open covering. For M∈

∏
λ Modh(AX ,λ),

M is uniformly bounded w.r.t. B def⇐⇒
mι(Mλ|U) is bounded on Λ (∀U ∈ U , closed embedding ι : U ↪→ Cn).

The definition does not depend on the choice of (U , Φ) and ι.
• Modub(AX ,Λ,B): full subcategory of

∏
λ Modh(AX ,λ) consisting

of uniformly bounded families
• Db

ub(AX ,Λ,B): full subcategory of
∏

λ Db
h (AX ,λ) consisting of

complexes with H i(M•) ∈ Modub(AX ,Λ,B), H i(M•) = 0
(|i | >> 0)



Introduction Review: D-module Uniformly bounded family of D-modules Uniformly bounded family of g-modules Application

Definition: uniformly bounded family

Definition
An equivalence class of bounded trivialization is called a bornology of
AX ,Λ.

Definition
Let B be a bornology of AX ,Λ and fix (U , Φ) ∈ B such that U is an
affine open covering. For M∈

∏
λ Modh(AX ,λ),

M is uniformly bounded w.r.t. B def⇐⇒
mι(Mλ|U) is bounded on Λ (∀U ∈ U , closed embedding ι : U ↪→ Cn).

The definition does not depend on the choice of (U , Φ) and ι.
• Modub(AX ,Λ,B): full subcategory of

∏
λ Modh(AX ,λ) consisting

of uniformly bounded families
• Db

ub(AX ,Λ,B): full subcategory of
∏

λ Db
h (AX ,λ) consisting of

complexes with H i(M•) ∈ Modub(AX ,Λ,B), H i(M•) = 0
(|i | >> 0)



Introduction Review: D-module Uniformly bounded family of D-modules Uniformly bounded family of g-modules Application

Definition: uniformly bounded family

Definition
An equivalence class of bounded trivialization is called a bornology of
AX ,Λ.

Definition
Let B be a bornology of AX ,Λ and fix (U , Φ) ∈ B such that U is an
affine open covering. For M∈

∏
λ Modh(AX ,λ),

M is uniformly bounded w.r.t. B def⇐⇒
mι(Mλ|U) is bounded on Λ (∀U ∈ U , closed embedding ι : U ↪→ Cn).

The definition does not depend on the choice of (U , Φ) and ι.
• Modub(AX ,Λ,B): full subcategory of

∏
λ Modh(AX ,λ) consisting

of uniformly bounded families
• Db

ub(AX ,Λ,B): full subcategory of
∏

λ Db
h (AX ,λ) consisting of

complexes with H i(M•) ∈ Modub(AX ,Λ,B), H i(M•) = 0
(|i | >> 0)



Introduction Review: D-module Uniformly bounded family of D-modules Uniformly bounded family of g-modules Application

Definition: uniformly bounded family

Definition
An equivalence class of bounded trivialization is called a bornology of
AX ,Λ.

Definition
Let B be a bornology of AX ,Λ and fix (U , Φ) ∈ B such that U is an
affine open covering. For M∈

∏
λ Modh(AX ,λ),

M is uniformly bounded w.r.t. B def⇐⇒
mι(Mλ|U) is bounded on Λ (∀U ∈ U , closed embedding ι : U ↪→ Cn).

The definition does not depend on the choice of (U , Φ) and ι.
• Modub(AX ,Λ,B): full subcategory of

∏
λ Modh(AX ,λ) consisting

of uniformly bounded families
• Db

ub(AX ,Λ,B): full subcategory of
∏

λ Db
h (AX ,λ) consisting of

complexes with H i(M•) ∈ Modub(AX ,Λ,B), H i(M•) = 0
(|i | >> 0)



Introduction Review: D-module Uniformly bounded family of D-modules Uniformly bounded family of g-modules Application

Operations of bornology

Definition
Let f : Y → X be a morphism between smooth varieties and B a
bornology of AX ,Λ. Fix (U , Φ) ∈ B and set

f #B := (equivalence class of (f −1U , f #Φ)).

f #B does not depend on the choice of (U , Φ).
Similarly, corresponding to the operations of AX ,Λ (product #, exterior
tensor ⊠, (·)L twisted by an invertible sheaf L, opposite (·)op of
algebras), one can define operations of bornology.
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Fundamental properties
• X , Y : smooth varieties
• AX ,Λ, AY ,Λ: families of TDOs on X and Y
• BX ,BY : bornologies of AX ,Λ and AY ,Λ, respectively

Theorem (K-)

1. M∈ Modub(AX ,Λ,B)⇒ LenAX ,λ
(Mλ) is bounded on λ ∈ Λ.

2. For 0→ L →M→N → 0 (exact) in
∏

λ Modh(AX ,λ),

L,N ∈ Modub(AX ,Λ,B)⇔M ∈ Modub(AX ,Λ,B).

3. Let f : Y → X be a morphism of varieties. Then Df+ and Lf ∗

preserve the uniform boundedness:

Df+ : Db
ub(f #AX ,Λ, f #B)→ Db

ub(AX ,Λ,B),
Lf ∗ : Db

ub(AX ,Λ,B)→ Db
ub(f #AX ,Λ, f #B).

4. For M• ∈ Db
ub(AX ,Λ ⊠ A op

Y ,Λ,BX ⊠ Bop
Y ) and

N • ∈ Db
ub(AY ,Λ,BY ), we have

(Rq∗(M•
λ ⊗L

p−1AY ,λ
p−1N •

λ ))λ∈Λ ∈ Db
ub(AX ,Λ,BX ).

X q←− X × Y p−→ Y : projections
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G-equivariant bornology

• G : affine algebraic group
• X : smooth G-variety

A TDO AX on X is said to be G-equivariant if
1. a homomorphism U(g)→ AX and
2. an isomorphism π#AX ≃ m#AX (+ associative law etc.) are

given,
where X π←−−−−−−

projection
G × X m−−−−−−−−→

multiplication
X .

Definition
Let AX ,Λ be a family of G-equivariant TDOs on X . A bornology B is
said to be G-equivariant if

π#B = m#B

under π#AX ,Λ ≃ m#AX ,Λ.
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Homogeneous variety

Theorem
If X is a homogeneous G-variety G/H, there is a unique G-equivariant
bornology of AX ,Λ.

Idea of proof.

• If X = G , any G-equivariant TDO is canonically isomorphic to DG .
• Then there is a unique G-equivariant bornology on G .
• A bornology on G/H is determined by its pull-back by the

quotient map G → G/H.
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G-equivariant D-module

• Assume |G\X | <∞. (X is not necessarily homogeneous.)

By Beilinson–Bernstein’s classification of equivariant D-modules (’81),
any irreducible G-equivariant AX ,λ-module can be obtained by taking
direct images, cohomologies and subquotients.

G → G/Gx ↪→ X

Theorem
Let B be a G-equivariant bornology of AX ,Λ. Any family of
G-equivariant AX ,λ-modules with bounded lengths is uniformly
bounded.
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Beilinson–Bernstein correspondence

• G : connected reductive algebraic group
• B = TU: Borel subgroup of G
• DG/B,λ := (p∗(DG/U)/p∗(DG/U)Ker(−λ))T (λ ∈ t∗)
• Iλ: minimal primitive ideal of U(g) with infinitesimal character

λ− ρ

Then we have U(g)/Iλ
≃−→ Γ(DG/B,λ).

Fact (Beilinson–Bernstein ’81)
If λ− ρ is regular anti-dominant,

Γ: Modqc(DG/B,λ)→ Mod(U(g)/Iλ)

gives an equivalence of categories. If λ− ρ is anti-dominant and not
regular, this is true for some full subcategory of Modqc(DG/B,λ).

Hereafter any twist λ is assumed to satisfy the anti-dominant condition.
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Uniformly bounded family

Definition
We say that a family (Vi)i∈I of g-modules is uniformly bounded if

1. supi Leng(Vi) <∞
2. the family of all composition factors of all Vi is isomorphic to

(Γ(Mj))j∈J for some uniformly bounded family (Mj)j∈J of
twisted D-modules on G/B.

A family of (g, K )-modules is said to be uniformly bounded if it is
uniformly bounded as a family of g-modules.

Then the uniform boundedness satisfies the properties stated in the
introduction.
For example, the Zuckerman derived functors are realized as a
composition of direct images and inverse images of D-modules (F. V.
Bien ’90).
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Family of (g, K )-modules

• K : a closed subgroup G

Theorem (K-)
Assume that |K\G/B| <∞. Then any family of (g, K )-modules with
bounded lengths is uniformly bounded. In particular, a family of
irreducible (g, K )-modules is uniformly bounded.

e.g. Harish-Chandra module, object in the BGG category O

Proof.
This theorem follows from the similar result of K -equivariant
D-modules.
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U(g)G ′-module
• G ′: connected reductive subgroup of G
• K ′: (finite covering of) reductive subgroup of G ′

Theorem
Let (Vi)i∈I (resp. (V ′

i )i∈I) be a uniformly bounded family of
(g, K ′)-modules (resp. (g′, K ′)-modules). Then ∃C > 0 s.t.
∀i ∈ I, j ∈ N

LenU(g)G′ (Hj(g′, K ′; Vi ⊗ V ′
i )) ≤ C

Remark
H0(g′, K ′; Vi ⊗ V ′

i )∗ ≃ Homg′,K ′(Vi , (V ′
i )∗

K ′)

Proof.
1. (Dn−jΓ∆(G ′)

∆(K ′)(Vi ⊗ V ′
i ))i∈I ∈ Modub(g⊕ g′, ∆(G ′))

2. Hj(g′, K ′; Vi ⊗ V ′
i ) ≃ Dn−jΓ∆(G ′)

∆(K ′)(Vi ⊗ V ′
i )∆(G ′)

3. (·)∆(G ′) : Mod(g⊕ g′, ∆(G ′))→ Mod(U(g)G ′) is exact and sends
irreducible objects to irreducible objects or zero.
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Theta lift

Example
• G = Sp(n,C)
• V =(Harish-Chandra module of Segal–Shale–Weil rep.)
• ((g′, K ′), (g′′, K ′′)): reductive dual pair

For an irreducible (g′, K ′)-module V ′, set

Θi(V ′) := Hi(g′, K ′; V ⊗ (V ′)∗
K ′) ((g′′, K ′′)-module).

Then ∃C > 0 (independent of V ′) s.t.

Leng′′,K ′′(Θi(V ′)) ≤ C .

R. Howe (’89) has proved that Θ0(V ′) has finite length and has a
unique irreducible quotient. (We can not prove the later from uniformly
bounded family.)
Cohomological theta lift in the p-adic case is studied by
Adams–Prasad–Savin (’17).
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Uniformly bounded multiplicities

• G ′
R ⊂ GR: Lie group and its closed subgroup

Consider when

dim(HomG ′
R
(V |G ′

R
, V ′)) <∞,

sup
V ,V ′

dim(HomG ′
R
(V |G ′

R
, V ′)) <∞,

where V and V ′ belong to some classes of (irreducible) representations
of GR and G ′

R, respectively.

Example
• finite-dimensional representations
• principal series representations on a partial flag variety
• holomorphic discrete series representations
• cohomologically induced representations

Suppose GR is reductive.
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Known results 1

Multiplicity-free

• T. Kobayashi ’97-, visible action (for unitary representations)
• Aizenbud–Gourevitch ’09, Sun–Zhu ’12 (multiplicity one theorem)

Gelfand–Kazhdan criterion (and variations)

Real (or open) orbit

• Kobayashi–Oshima ’13 (finite multiplicity theorem)
|G ′

R\GR/PR| <∞
• H. Yamashita ’94 |G ′

R\GR/PR| <∞ (or
AV(VK ) ∩Ad(g)(g′)⊥ = {0} ∃g ∈ GR)
• Krötz–Schlichtkrull ’14

V is any, V ′ is finite-dimensional (e.g. HomG ′
R
(V ,C)).

• PR: minimal parabolic subgroup of GR
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Known results 2
G and G ′ are some complexification of GR and G ′

R, respectively.

Complex (finite) orbit, holonomicity of D-modules

• Kobayashi–Oshima ’13 (uniformly bounded theorem)
|G ′\G/B| <∞
• Aizenbud–Gourevitch–Minchenko ’16 |G ′\G/Q| <∞
• T. Tauchi ’21 |G ′\G/Q| <∞
• Aizenbud–Gourevitch (arXiv:2109.00204)

dim(O ∩ (g′)⊥) ≤ dim(O)/2 (∀ G-orbit O ⊂ V(AnnU(g)(V )))
• T. Kobayashi ’21 |G ′\G/R| <∞
• Wen-Wei Li (arXiv:2207.08994) |G ′\G/B| <∞, cohomological

multiplicity

• B: Borel subgroup of G
• QR, Q: parabolic subgroup of GR and its complexification
• R ⊂ Q: parabolic subgroup of G
• V(AnnU(g)(V )): subvariety of g∗ determined by gr(AnnU(g)(V ))
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Uniformly bounded family

Complex (finite) orbit, holonomicity of D-modules

• Kobayashi–Oshima ’13
• Aizenbud–Gourevitch–Minchenko ’16
• T. Tauchi ’21
• Aizenbud–Gourevitch (arXiv:2109.00204)
• T. Kobayashi ’21
• Wen-Wei Li (arXiv:2207.08994)

Using uniformly bounded family, we can treat uniformly the results
about uniformly bounded multiplicity theorems.

Remark
The methods in the papers and ours are different, so it does not mean
that all results in the papers are generalized.

Hereafter, we concentrate on more concrete setting.
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Setting
Consider the branching problem of real reductive Lie groups.
• G : (connected) reductive algebraic group / C
• G ′ ⊂ G : reductive subgroup
• G ′

R ⊂ GR: real forms of G ′ and G
• K ′

R ⊂ KR: maximal compact subgroups of G ′
R and GR

• K ′ ⊂ K : the complexifications of K ′
R and KR

(modulo connected components and covering)

Question
Let V be an irreducible (g, K )-module. When does the restriction
V |g′,K ′ have uniformly bounded multiplicities:

sup
V ′

dim(Homg′,K ′(V |g′,K ′ , V ′)) <∞

(V ′ : irreducible (g′, K ′)-module)

We can treat smooth or unitary representation cases and induction
setting, but omit them in this talk.
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Characterization of uniformly bounded multiplicities

Theorem (K-)
Let V be an irreducible (g, K )-module. Set I := AnnU(g)(V ). Then the
following conditions on V are equivalent:

1. V |g′,K ′ has uniformly bounded multiplicities
2. PI.deg((U(g)/I)G ′) <∞
3. (S(g)/

√
gr(I))G ′ is Poisson-commutative

4. the action of G ′ on V(gr(I))(⊂ g∗) is coisotropic
5. (U(g)/I)G ′ is finitely generated as a Z(g′)-module.

The same is true for smooth or unitary representations.

3 ⇔ 4 ⇒ 5 follows from the study of Hamiltonian Poisson G-varieties
by I. Losev (’09).
To show 1 ⇔ 2, we need the action

(U(g)/I)G ′
↷ (V ⊗U(g′) V ′)K ′ = H0(g′, K ′; V ⊗ V ′)

(V ′: irreducible (g′, K ′)-module).

Remark
H0(g′, K ′; V ⊗ V ′)∗ ≃ Homg′,K ′(V , (V ′)∗

K ′)
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PI degree

Definition
Let A be a (unital associative) C-algebra. A C-coefficient
non-commutative polynomial f is a polynomial identity of A if

f (X1, X2, . . . , Xn) = 0 (∀Xi ∈ A).

• If A is commutative, f (X , Y ) = XY − YX is a polynomial identity
of A.
• If there is a surjection A↠ B of C-algebras, then

{polynomial identity of A} ⊂ {polynomial identity of B} .

Definition
PI.deg(A) is the supremum of n satisfying

{polynomial identity of A} ⊂ {polynomial identity of Mn(C)} .

• PI.deg(Mn(C)) = n (e.g. Amitsur–Levitzki ’50)
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PI.deg(A) and multiplicity

• A
∃↠ Mn(C)⇒ PI.deg(A) ≥ n

• A
∃↠ B or B ∃

↪→ A ⇒ PI.deg(A) ≥ PI.deg(B)

Proposition
Let {Vi}i∈I be a family of A-modules. If A↷

⊕
i∈I Vi is faithful,

PI.deg(A) ≤ sup {dim(Vi) : i ∈ I} .

Proof.
It is obvious from A ↪→

∏
i∈I EndC(Vi).

Proposition
If A is noetherian and has at most countable dimension, then

PI.deg(A) = sup {dim(V ) : V irreducible A-module} .
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Bounds

Theorem (K-)
Let V be an irreducible (g, K )-module. Set I := AnnU(g)(V ). Then
∃C > 0 independent of V and I s.t.

PI.deg((U(g)/I)G ′) ≤ sup
V ′

dim(Homg′,K ′(V , V ′))

≤ C · PI.deg((U(g)/I)G ′).

Proof of the upper bound.
We have seen that ∃C > 0 independent of V and I s.t.

Len(U(g)/I)G′ ((V ⊗U(g′) V ′)K ′) ≤ C .

This shows

dim((V ⊗U(g′) V ′)K ′) ≤ C · PI.deg((U(g)/I)G ′)
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Corollaries

Corollary
V |g′,K ′ is multiplicity-free only if PI.deg((U(g)/I)G ′) = 1. (If V is
unitarizable, PI.deg((U(g)/I)G ′) = 1⇔ (U(g)/I)G ′ is commutative.)

Corollary
The uniform boundedness of multiplicities depends only on
complexifications of Lie algebras.

Example
(GR, G ′

R) = (GL(n,R), O(n)), (GL(n,R), O(p, q)) (p + q = n)
The pairs have the same complexification (GL(n,C), O(n,C)) modulo
inner automorphisms.

V |O(n) has uniformly bounded multiplicities
⇔V |o(p,q),O(p)×O(q) has uniformly bounded multiplicities

We can not replace ‘uniformly bounded multiplicities’ by
‘multiplicity-free’. (e.g. Kobayashi–Ørsted–Pevzner ’11)
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Reduction to fiber

• LR ⋉ NR = PR ⊂ GR: parabolic subgroup

Theorem (K-)
Assume that G/P is a spherical G ′-variety. Then ∃ reductive subgroup
L′
R ⊂ LR ∩ G ′

R (concretely computable) s.t.

IndGR
PR

(VL)|G ′
R

has uniformly bounded multiplicities
⇔VL|L′

R
has uniformly bounded multiplicities

for any irreducible smooth admissible Fréchet rep. VL of LR.

This is an analogue of
• algebraic representation case of reductive algebraic groups / C (F.

Sato ’93, K- ’14),
• the propagation theorem in the theory of visible actions (T.

Kobayashi ’97, ’13).
The ‘if’ part of the theorem (+ some modification) is also true for
cohomologically parabolic inductions.
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Induction
We can treat a similar problem for

sup
V

dim(Homg′,K ′(V |g′,K ′ , V ′)) ≒ sup
V

dim(HomGR(V , IndGR
G ′
R
(V ′))).

In fact, it can be viewed as the branching problem from
O(G/G ′)⊗ U(g) to U(g).
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Summary

Can
• Boundedness of lengths of modules
• Boundedness of the number of irreducible modules
• Boundedness of multiplicities in restrictions and inductions

Can not
• Represent the constants C explicitly.
• Multiplicity-free?
• Irreducible?
• Unique irreducible quotient?
• Applicable only to algebraic groups (modulo connected

components and covering).
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Thank you for listening!
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