Introduction	Review: <i>D</i> -module	Uniformly bounded family of \mathscr{D} -modules	Uniformly bounded family of g-modules	Application
0	0	0	0	00
000000	000000	000000000000000000000000000000000000000	00000	0000000000

Uniformly bounded multiplicities in the branching problem and *D*-modules

Masatoshi Kitagawa

Waseda University

Aug. 24, 2022 / Online

Introduction	Review: <i>D</i> -module	Uniformly bounded family of \mathscr{D} -modules	Uniformly bounded family of g-modules	Application
0	0	0	0	00
000000	000000	0000000000	00000	000000000

This talk is a summary of

- 1. arXiv:2109.05556,
- 2. arXiv:2109.05555.

	Introduction	Review: D-module	Uniformly bounded family of \mathscr{D} -modules	Uniformly bounded family of g-modules	Application
000000 000000 00000000 00000 00000 00000	0	0	0	0	00
	000000	000000	0000000000	00000	000000000

Outline

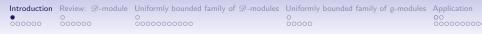
Introduction

Review: *D*-module

Uniformly bounded family of \mathscr{D} -modules

Uniformly bounded family of \mathfrak{g} -modules

Application



Outline

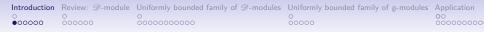
Introduction

Review: *D*-module

Uniformly bounded family of *D*-modules

Uniformly bounded family of g-modules

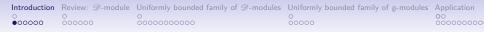
Application



In the representation theory of reductive Lie algebras/groups, there are many fundamental finiteness properties, e.g. $% \left({{{\mathbf{r}}_{i}}_{i}} \right)$

- 1. Length of a Verma module $<\infty$
- 2. Length of a principal series representation $<\infty$
- 3. Harish-Chandra's admissibility theorem dim $\operatorname{Hom}_{\mathcal{K}}(F, V) < \infty$ (V: irreducible $(\mathfrak{g}, \mathcal{K})$ -module, $F \in \widehat{\mathcal{K}}$)
- 4. | {irreducible (\mathfrak{g}, K)-modules with infinitesimal character λ } / \simeq | < ∞

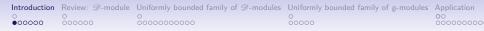
Topic in this talk



In the representation theory of reductive Lie algebras/groups, there are many fundamental finiteness properties, e.g. $% \left({{{\mathbf{r}}_{i}}_{i}} \right)$

- 1. Length of a Verma module $<\infty$
- 2. Length of a principal series representation $<\infty$
- 3. Harish-Chandra's admissibility theorem dim $\operatorname{Hom}_{\mathcal{K}}(F, V) < \infty$ (V: irreducible $(\mathfrak{g}, \mathcal{K})$ -module, $F \in \widehat{\mathcal{K}}$)
- 4. | {irreducible (\mathfrak{g}, K)-modules with infinitesimal character λ } / \simeq | < ∞

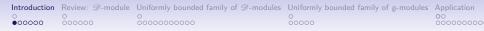
Topic in this talk



In the representation theory of reductive Lie algebras/groups, there are many fundamental finiteness properties, e.g. $% \left({{{\mathbf{r}}_{i}}_{i}} \right)$

- 1. Length of a Verma module $<\infty$
- 2. Length of a principal series representation $<\infty$
- Harish-Chandra's admissibility theorem dim Hom_K(F, V) < ∞ (V: irreducible (g, K)-module, F ∈ K̂)
- 4. | {irreducible ($\mathfrak{g}, \mathcal{K}$)-modules with infinitesimal character λ } / \simeq | < ∞

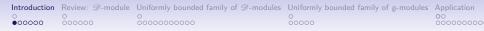
Topic in this talk



In the representation theory of reductive Lie algebras/groups, there are many fundamental finiteness properties, e.g. $% \left({{{\mathbf{r}}_{i}}_{i}} \right)$

- 1. Length of a Verma module $<\infty$
- 2. Length of a principal series representation $<\infty$
- 3. Harish-Chandra's admissibility theorem dim $\operatorname{Hom}_{\mathcal{K}}(F, V) < \infty$ (V: irreducible $(\mathfrak{g}, \mathcal{K})$ -module, $F \in \widehat{\mathcal{K}}$)
- 4. | {irreducible (\mathfrak{g}, K)-modules with infinitesimal character λ } / \simeq | < ∞

Topic in this talk



In the representation theory of reductive Lie algebras/groups, there are many fundamental finiteness properties, e.g. $% \left({{{\mathbf{r}}_{i}}_{i}} \right)$

- 1. Length of a Verma module $<\infty$
- 2. Length of a principal series representation $<\infty$
- Harish-Chandra's admissibility theorem dim Hom_K(F, V) < ∞ (V: irreducible (g, K)-module, F ∈ K̂)
- 4. | {irreducible (\mathfrak{g}, K)-modules with infinitesimal character λ } / \simeq | < ∞

Topic in this talk

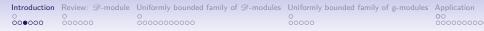
Motivation: Boundedness property

- 1. sup_highest weight (Length of a Verma module) $<\infty$
- 2. $\sup_{(\sigma,\lambda)\in\widehat{M}\times\mathfrak{a}^*}(\text{Length of a principal series representation}) < \infty$
- 3. $\sup_{V} \dim \operatorname{Hom}_{K}(F, V) < \infty$ (V: irr. (\mathfrak{g}, K) -module, $F \in \widehat{K}$)
- 4. $\sup_{\lambda} | \{ \text{irr. } (\mathfrak{g}, K) \text{-modules with inf. char. } \lambda \} / \simeq | < \infty$

cf.

- 1. W. Soergel's study on blocks of the BGG category $\ensuremath{\mathcal{O}}$
- 2. Kobayashi-Oshima '13 Appendix
- 3. Harish-Chandra's subquotient theorem
- 4. Langlands' and Knapp-Zuckerman's classifications,

Beilinson–Bernstein's classification of K-equivariant \mathcal{D} -modules



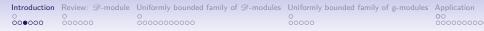
Motivation: $\mathcal{U}(\mathfrak{g})^{K}$ -module

- G: connected real reductive Lie group
- K: maximal compact subgroup of G
- $\mathfrak{g} := \operatorname{Lie}(G) \otimes_{\mathbb{R}} \mathbb{C}$

Then

- $\mathcal{U}(\mathfrak{g})^{K}$ -module $\operatorname{Hom}_{K}(F, V)$ is irreducible or zero.
 - $(F \in K, V: ext{ irr. } (\mathfrak{g}, K) ext{-module})$

(Application: Harish-Chandra's subquotient theorem, theta lift for compact dual pair)



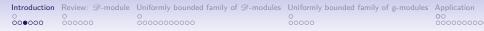
Motivation: $\mathcal{U}(\mathfrak{g})^{\mathcal{K}}$ -module

- G: connected real reductive Lie group
- K: maximal compact subgroup of G
- $\mathfrak{g} := \operatorname{Lie}(G) \otimes_{\mathbb{R}} \mathbb{C}$

Then

U(g)^K-module Hom_K(F, V) is irreducible or zero.
 (F ∈ K̂, V: irr. (g, K)-module)

(Application: Harish-Chandra's subquotient theorem, theta lift for compact dual pair)



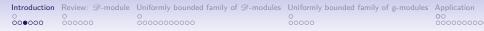
Motivation: $\mathcal{U}(\mathfrak{g})^{\mathcal{K}}$ -module

- G: connected real reductive Lie group
- K: maximal compact subgroup of G
- $\mathfrak{g} := \operatorname{Lie}(G) \otimes_{\mathbb{R}} \mathbb{C}$

Then

- $\mathcal{U}(\mathfrak{g})^{K}$ -module $\operatorname{Hom}_{K}(F, V)$ is irreducible or zero.
 - $(F \in \widehat{K}, V: irr. (\mathfrak{g}, K)-module)$

(Application: Harish-Chandra's subquotient theorem, theta lift for compact dual pair)



Motivation: $\mathcal{U}(\mathfrak{g})^{K}$ -module

- G: connected real reductive Lie group
- K: maximal compact subgroup of G
- $\mathfrak{g} := \operatorname{Lie}(G) \otimes_{\mathbb{R}} \mathbb{C}$

Then

- $\mathcal{U}(\mathfrak{g})^{K}$ -module $\operatorname{Hom}_{K}(F, V)$ is irreducible or zero.
 - $(F \in \widehat{K}, V: irr. (\mathfrak{g}, K)-module)$

(Application: Harish-Chandra's subquotient theorem, theta lift for compact dual pair)

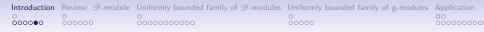
Introduction	Review: <i>D</i> -module	Uniformly bounded family of \mathscr{D} -modules	Uniformly bounded family of g-modules	Application
0	0	0	0	00
000000	000000	0000000000	00000	000000000

Goal

Want to find a good framework that can handle these boundedness properties.

Application: uniformly bounded multiplicity theorem

- branching problem of unitary highest weight module (T. Kobayashi '97, '08)
- Kobayashi's conjecture ('11) for A_q(λ) (q: 'virtually symmetric type')
- Kobayashi–Oshima's uniformly bounded theorem ('13)



• g: complex reductive Lie algebra

Want to define

Mod_{ub}(g_I) ⊂ ∏_{i∈I} Mod(g): category of uniformly bounded families of g-modules (I: index set)

satisfying the following conditions:

- 1. $(V_i)_{i\in I} \in \operatorname{Mod}_{ub}(\mathfrak{g}_I) \Rightarrow \sup_i \operatorname{Len}_{\mathfrak{g}}(V_i) < \infty$.
- 2. For $0 \to L \to M \to N \to 0$ (exact sequence in $\prod_{i \in I} \operatorname{Mod}(\mathfrak{g})$),

 $L, N \in \operatorname{Mod}_{ub}(\mathfrak{g}_I) \Leftrightarrow M \in \operatorname{Mod}_{ub}(\mathfrak{g}_I).$

- 3. Any family of Harish-Chandra modules (or objects in the BGG category \mathcal{O}) with bounded lengths is uniformly bounded.
- The parabolic induction functor U(g) ⊗_{U(p)} (·): Mod(l) → Mod(g) and the Zuckerman derived functors D^jΓ^K_M(·) preserve uniform boundedness.
- 5. If $M \in \operatorname{Mod}_{ub}(\mathfrak{g}_I)$ and $(F_i)_{i \in I} \in \prod_{i \in I} \operatorname{Mod}(\mathfrak{g})$ with $\sup_i \dim(F_i) < \infty$, then $(M_i \otimes F_i)_{i \in I} \in \operatorname{Mod}_{ub}(\mathfrak{g}_I)$.

• g: complex reductive Lie algebra

Want to define

Mod_{ub}(g_I) ⊂ ∏_{i∈I} Mod(g): category of uniformly bounded families of g-modules (I: index set)

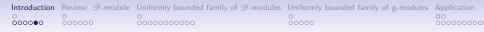
satisfying the following conditions:

1. $(V_i)_{i\in I} \in \operatorname{Mod}_{ub}(\mathfrak{g}_I) \Rightarrow \sup_i \operatorname{Len}_{\mathfrak{g}}(V_i) < \infty$.

2. For $0 \to L \to M \to N \to 0$ (exact sequence in $\prod_{i \in I} \operatorname{Mod}(\mathfrak{g})$),

 $L, N \in \operatorname{Mod}_{ub}(\mathfrak{g}_I) \Leftrightarrow M \in \operatorname{Mod}_{ub}(\mathfrak{g}_I).$

- 3. Any family of Harish-Chandra modules (or objects in the BGG category \mathcal{O}) with bounded lengths is uniformly bounded.
- The parabolic induction functor U(g) ⊗_{U(p)} (·): Mod(l) → Mod(g) and the Zuckerman derived functors D^jΓ^K_M(·) preserve uniform boundedness.
- 5. If $M \in \operatorname{Mod}_{ub}(\mathfrak{g}_I)$ and $(F_i)_{i \in I} \in \prod_{i \in I} \operatorname{Mod}(\mathfrak{g})$ with $\sup_i \dim(F_i) < \infty$, then $(M_i \otimes F_i)_{i \in I} \in \operatorname{Mod}_{ub}(\mathfrak{g}_I)$.



• g: complex reductive Lie algebra

Want to define

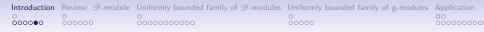
Mod_{ub}(g_l) ⊂ ∏_{i∈l} Mod(g): category of uniformly bounded families of g-modules (*l*: index set)

satisfying the following conditions:

- 1. $(V_i)_{i \in I} \in \operatorname{Mod}_{ub}(\mathfrak{g}_I) \Rightarrow \sup_i \operatorname{Len}_{\mathfrak{g}}(V_i) < \infty$.
- 2. For $0 \to L \to M \to N \to 0$ (exact sequence in $\prod_{i \in I} \operatorname{Mod}(\mathfrak{g})$),

 $L,N\in \operatorname{Mod}_{ub}(\mathfrak{g}_I)\Leftrightarrow M\in \operatorname{Mod}_{ub}(\mathfrak{g}_I).$

- Any family of Harish-Chandra modules (or objects in the BGG category 𝒪) with bounded lengths is uniformly bounded.
- The parabolic induction functor U(g) ⊗_{U(p)} (·): Mod(l) → Mod(g) and the Zuckerman derived functors D^jΓ^K_M(·) preserve uniform boundedness.
- 5. If $M \in \operatorname{Mod}_{ub}(\mathfrak{g}_I)$ and $(F_i)_{i \in I} \in \prod_{i \in I} \operatorname{Mod}(\mathfrak{g})$ with $\sup_i \dim(F_i) < \infty$, then $(M_i \otimes F_i)_{i \in I} \in \operatorname{Mod}_{ub}(\mathfrak{g}_I)$.



• g: complex reductive Lie algebra

Want to define

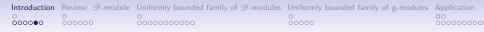
Mod_{ub}(g_l) ⊂ ∏_{i∈l} Mod(g): category of uniformly bounded families of g-modules (*l*: index set)

satisfying the following conditions:

- 1. $(V_i)_{i\in I} \in \operatorname{Mod}_{ub}(\mathfrak{g}_I) \Rightarrow \sup_i \operatorname{Len}_{\mathfrak{g}}(V_i) < \infty$.
- 2. For $0 \to L \to M \to N \to 0$ (exact sequence in $\prod_{i \in I} \operatorname{Mod}(\mathfrak{g})$),

$$L, N \in \operatorname{Mod}_{ub}(\mathfrak{g}_I) \Leftrightarrow M \in \operatorname{Mod}_{ub}(\mathfrak{g}_I).$$

- 3. Any family of Harish-Chandra modules (or objects in the BGG category \mathcal{O}) with bounded lengths is uniformly bounded.
- The parabolic induction functor U(g) ⊗_{U(p)} (·): Mod(l) → Mod(g) and the Zuckerman derived functors D^jΓ^K_M(·) preserve uniform boundedness.
- 5. If $M \in \operatorname{Mod}_{ub}(\mathfrak{g}_I)$ and $(F_i)_{i \in I} \in \prod_{i \in I} \operatorname{Mod}(\mathfrak{g})$ with $\sup_i \dim(F_i) < \infty$, then $(M_i \otimes F_i)_{i \in I} \in \operatorname{Mod}_{ub}(\mathfrak{g}_I)$.



• g: complex reductive Lie algebra

Want to define

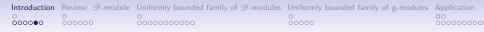
Mod_{ub}(g_l) ⊂ ∏_{i∈l} Mod(g): category of uniformly bounded families of g-modules (*l*: index set)

satisfying the following conditions:

- 1. $(V_i)_{i \in I} \in \operatorname{Mod}_{ub}(\mathfrak{g}_I) \Rightarrow \sup_i \operatorname{Len}_{\mathfrak{g}}(V_i) < \infty$.
- 2. For $0 \to L \to M \to N \to 0$ (exact sequence in $\prod_{i \in I} \operatorname{Mod}(\mathfrak{g})$),

$$L, N \in \operatorname{Mod}_{ub}(\mathfrak{g}_I) \Leftrightarrow M \in \operatorname{Mod}_{ub}(\mathfrak{g}_I).$$

- 3. Any family of Harish-Chandra modules (or objects in the BGG category \mathcal{O}) with bounded lengths is uniformly bounded.
- The parabolic induction functor U(g) ⊗_{U(p)} (·): Mod(l) → Mod(g) and the Zuckerman derived functors D^jΓ^K_M(·) preserve uniform boundedness.
- 5. If $M \in \operatorname{Mod}_{ub}(\mathfrak{g}_I)$ and $(F_i)_{i \in I} \in \prod_{i \in I} \operatorname{Mod}(\mathfrak{g})$ with $\sup_i \dim(F_i) < \infty$, then $(M_i \otimes F_i)_{i \in I} \in \operatorname{Mod}_{ub}(\mathfrak{g}_I)$.
- $\operatorname{Len}(\cdot)$ means the length of a module.



• g: complex reductive Lie algebra

Want to define

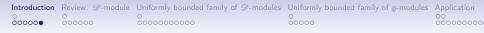
Mod_{ub}(g_l) ⊂ ∏_{i∈l} Mod(g): category of uniformly bounded families of g-modules (*l*: index set)

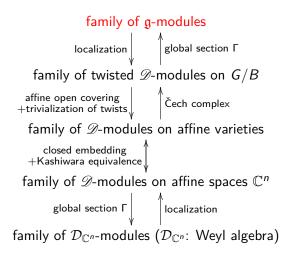
satisfying the following conditions:

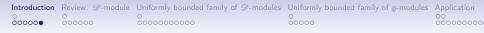
- 1. $(V_i)_{i\in I} \in \operatorname{Mod}_{ub}(\mathfrak{g}_I) \Rightarrow \sup_i \operatorname{Len}_{\mathfrak{g}}(V_i) < \infty$.
- 2. For $0 \to L \to M \to N \to 0$ (exact sequence in $\prod_{i \in I} \operatorname{Mod}(\mathfrak{g})$),

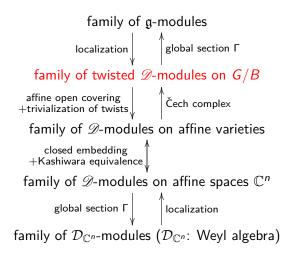
$$L, N \in \operatorname{Mod}_{ub}(\mathfrak{g}_I) \Leftrightarrow M \in \operatorname{Mod}_{ub}(\mathfrak{g}_I).$$

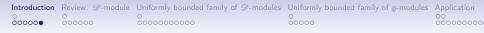
- 3. Any family of Harish-Chandra modules (or objects in the BGG category \mathcal{O}) with bounded lengths is uniformly bounded.
- The parabolic induction functor U(g) ⊗_{U(p)} (·): Mod(l) → Mod(g) and the Zuckerman derived functors D^jΓ^K_M(·) preserve uniform boundedness.
- 5. If $M \in \operatorname{Mod}_{ub}(\mathfrak{g}_I)$ and $(F_i)_{i \in I} \in \prod_{i \in I} \operatorname{Mod}(\mathfrak{g})$ with $\sup_i \dim(F_i) < \infty$, then $(M_i \otimes F_i)_{i \in I} \in \operatorname{Mod}_{ub}(\mathfrak{g}_I)$.

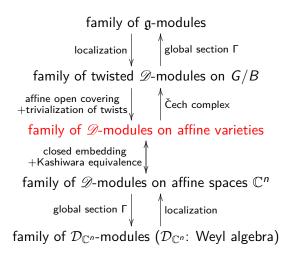


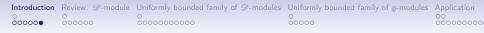


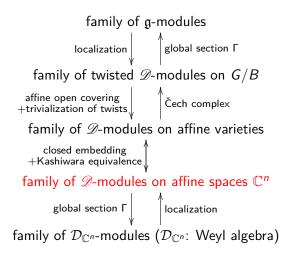


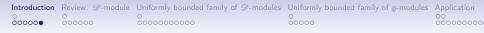


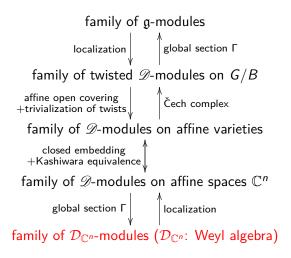


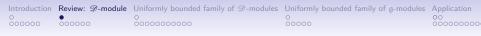












Outline

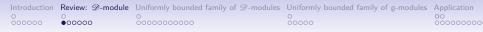
Introduction

Review: *D*-module

Uniformly bounded family of *D*-modules

Uniformly bounded family of g-modules

Application



Recall the notion of TDOs (see e.g. Kashiwara '89). For a (complex quasi-projective) smooth variety U,

- \mathcal{O}_U : structure sheaf of U
- \mathscr{D}_U : sheaf of algebras of (non-twisted) differential operators

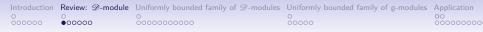
Definition

Let \mathscr{A}_X be a sheaf of algebras on a smooth variety X. We say that \mathscr{A}_X is an algebra of twisted differential operators (TDO) if

- 1. a monomorphism $\mathcal{O}_X \hookrightarrow \mathscr{A}_X$ is given,
- 2. there are an open covering $X = \bigcup_i U_i$ and isomorphisms $\varphi_i : \mathscr{A}_X |_{U_i} \simeq \mathscr{D}_{U_i}$ with $\varphi_i |_{\mathcal{O}_{U_i}} = \text{id.}$

Remark

In many literatures, TDO is not necessarily assumed to be locally trivial in the Zariski/étale topology. For the definition of uniformly bounded families, we need some local triviality (Zariski/étale).



Recall the notion of TDOs (see e.g. Kashiwara '89). For a (complex quasi-projective) smooth variety U,

- \mathcal{O}_U : structure sheaf of U
- \mathscr{D}_U : sheaf of algebras of (non-twisted) differential operators

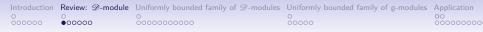
Definition

Let \mathscr{A}_X be a sheaf of algebras on a smooth variety X. We say that \mathscr{A}_X is an algebra of twisted differential operators (TDO) if

- 1. a monomorphism $\mathcal{O}_X \hookrightarrow \mathscr{A}_X$ is given,
- 2. there are an open covering $X = \bigcup_i U_i$ and isomorphisms $\varphi_i : \mathscr{A}_X |_{U_i} \simeq \mathscr{D}_{U_i}$ with $\varphi_i |_{\mathcal{O}_{U_i}} = \text{id.}$

Remark

In many literatures, TDO is not necessarily assumed to be locally trivial in the Zariski/étale topology. For the definition of uniformly bounded families, we need some local triviality (Zariski/étale).



Recall the notion of TDOs (see e.g. Kashiwara '89). For a (complex quasi-projective) smooth variety U,

- \mathcal{O}_U : structure sheaf of U
- \mathscr{D}_U : sheaf of algebras of (non-twisted) differential operators

Definition

Let \mathscr{A}_X be a sheaf of algebras on a smooth variety X. We say that \mathscr{A}_X is an algebra of twisted differential operators (TDO) if

- 1. a monomorphism $\mathcal{O}_X \hookrightarrow \mathscr{A}_X$ is given,
- 2. there are an open covering $X = \bigcup_i U_i$ and isomorphisms $\varphi_i : \mathscr{A}_X |_{U_i} \simeq \mathscr{D}_{U_i}$ with $\varphi_i |_{\mathcal{O}_{U_i}} = \mathrm{id}$.

Remark

In many literatures, TDO is not necessarily assumed to be locally trivial in the Zariski/étale topology. For the definition of uniformly bounded families, we need some local triviality (Zariski/étale).

Recall the notion of TDOs (see e.g. Kashiwara '89). For a (complex quasi-projective) smooth variety U,

- \mathcal{O}_U : structure sheaf of U
- \mathscr{D}_U : sheaf of algebras of (non-twisted) differential operators

Definition

Let \mathscr{A}_X be a sheaf of algebras on a smooth variety X. We say that \mathscr{A}_X is an algebra of twisted differential operators (TDO) if

- 1. a monomorphism $\mathcal{O}_X \hookrightarrow \mathscr{A}_X$ is given,
- 2. there are an open covering $X = \bigcup_i U_i$ and isomorphisms $\varphi_i : \mathscr{A}_X |_{U_i} \simeq \mathscr{D}_{U_i}$ with $\varphi_i |_{\mathcal{O}_{U_i}} = \mathrm{id}$.

Remark

In many literatures, TDO is not necessarily assumed to be locally trivial in the Zariski/étale topology. For the definition of uniformly bounded families, we need some local triviality (Zariski/étale).

Recall the notion of TDOs (see e.g. Kashiwara '89). For a (complex quasi-projective) smooth variety U,

- \mathcal{O}_U : structure sheaf of U
- \mathscr{D}_U : sheaf of algebras of (non-twisted) differential operators

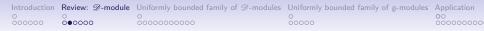
Definition

Let \mathscr{A}_X be a sheaf of algebras on a smooth variety X. We say that \mathscr{A}_X is an algebra of twisted differential operators (TDO) if

- 1. a monomorphism $\mathcal{O}_X \hookrightarrow \mathscr{A}_X$ is given,
- 2. there are an open covering $X = \bigcup_i U_i$ and isomorphisms $\varphi_i : \mathscr{A}_X |_{U_i} \simeq \mathscr{D}_{U_i}$ with $\varphi_i |_{\mathcal{O}_{U_i}} = \text{id.}$

Remark

In many literatures, TDO is not necessarily assumed to be locally trivial in the Zariski/étale topology. For the definition of uniformly bounded families, we need some local triviality (Zariski/étale).



 \mathscr{A}_X has a canonical order filtration induced from the isomorphisms $\mathscr{A}_X|_{U_i} \simeq \mathscr{D}_{U_i}.$

$\operatorname{gr} \mathscr{A}_X \simeq \pi_* \mathcal{O}_{T^*X}, \quad \pi \colon T^*X \to X \text{ projection}$

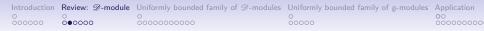
For an \mathscr{A}_X -module \mathcal{M} with a good filtration (\Rightarrow coherent),

 $\mathrm{Ch}(\mathcal{M}) := \mathrm{supp}(\mathcal{O}_{\mathcal{T}^*X} \otimes_{\pi^{-1}\pi_*\mathcal{O}_{\mathcal{T}^*X}} \pi^{-1}\mathrm{gr}(\mathcal{M})) \subset \mathcal{T}^*X.$

Definition

 \mathcal{M} is said to be holonomic if dim $Ch(\mathcal{M}) \leq dim(X)$ (i.e. $\mathcal{M} = 0$ or dim $Ch(\mathcal{M}) = dim(X)$)

- $Mod_h(\mathscr{A}_X)$: category of holonomic \mathscr{A}_X -modules
- D^b_h(𝔄_X) ⊂ D^b(𝔄_X): full subcategory consisting of complexes M[•] such that Hⁱ(M[•]) ∈ Mod_h(𝔄_X)



 \mathscr{A}_X has a canonical order filtration induced from the isomorphisms $\mathscr{A}_X|_{U_i} \simeq \mathscr{D}_{U_i}.$

 $\operatorname{gr} \mathscr{A}_X \simeq \pi_* \mathcal{O}_{\mathcal{T}^*X}, \quad \pi \colon \mathcal{T}^*X \to X \text{ projection}$

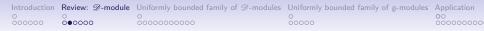
For an \mathscr{A}_X -module \mathcal{M} with a good filtration (\Rightarrow coherent),

$$\operatorname{Ch}(\mathcal{M}) := \operatorname{supp}(\mathcal{O}_{\mathcal{T}^*X} \otimes_{\pi^{-1}\pi_*\mathcal{O}_{\mathcal{T}^*X}} \pi^{-1}\operatorname{gr}(\mathcal{M})) \subset \mathcal{T}^*X.$$

Definition

 \mathcal{M} is said to be holonomic if dim $Ch(\mathcal{M}) \leq dim(X)$ (i.e. $\mathcal{M} = 0$ or dim $Ch(\mathcal{M}) = dim(X)$)

- $Mod_h(\mathscr{A}_X)$: category of holonomic \mathscr{A}_X -modules
- D^b_h(𝔄_X) ⊂ D^b(𝔄_X): full subcategory consisting of complexes M[•] such that Hⁱ(M[•]) ∈ Mod_h(𝔄_X)



 \mathscr{A}_X has a canonical order filtration induced from the isomorphisms $\mathscr{A}_X|_{U_i} \simeq \mathscr{D}_{U_i}.$

 $\operatorname{gr} \mathscr{A}_X \simeq \pi_* \mathcal{O}_{\mathcal{T}^*X}, \quad \pi \colon \mathcal{T}^*X \to X \text{ projection}$

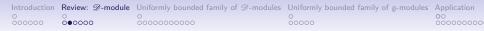
For an \mathscr{A}_X -module \mathcal{M} with a good filtration (\Rightarrow coherent),

$$\operatorname{Ch}(\mathcal{M}) := \operatorname{supp}(\mathcal{O}_{\mathcal{T}^*X} \otimes_{\pi^{-1}\pi_*\mathcal{O}_{\mathcal{T}^*X}} \pi^{-1}\operatorname{gr}(\mathcal{M})) \subset \mathcal{T}^*X.$$

Definition

 \mathcal{M} is said to be holonomic if dim $\operatorname{Ch}(\mathcal{M}) \leq \dim(X)$ (i.e. $\mathcal{M} = 0$ or dim $\operatorname{Ch}(\mathcal{M}) = \dim(X)$)

- $Mod_h(\mathscr{A}_X)$: category of holonomic \mathscr{A}_X -modules
- D^b_h(𝒜_X) ⊂ D^b(𝒜_X): full subcategory consisting of complexes M[•] such that Hⁱ(M[•]) ∈ Mod_h(𝒜_X)



 \mathscr{A}_X has a canonical order filtration induced from the isomorphisms $\mathscr{A}_X|_{U_i} \simeq \mathscr{D}_{U_i}.$

 $\operatorname{gr} \mathscr{A}_X \simeq \pi_* \mathcal{O}_{\mathcal{T}^*X}, \quad \pi \colon \mathcal{T}^*X \to X \text{ projection}$

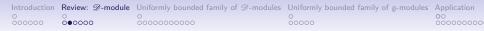
For an \mathscr{A}_X -module \mathcal{M} with a good filtration (\Rightarrow coherent),

$$\mathrm{Ch}(\mathcal{M}) := \mathrm{supp}(\mathcal{O}_{\mathcal{T}^*X} \otimes_{\pi^{-1}\pi_*\mathcal{O}_{\mathcal{T}^*X}} \pi^{-1}\mathrm{gr}(\mathcal{M})) \subset \mathcal{T}^*X.$$

Definition

 \mathcal{M} is said to be holonomic if dim $\operatorname{Ch}(\mathcal{M}) \leq \dim(X)$ (i.e. $\mathcal{M} = 0$ or dim $\operatorname{Ch}(\mathcal{M}) = \dim(X)$)

- $Mod_h(\mathscr{A}_X)$: category of holonomic \mathscr{A}_X -modules
- D^b_h(𝔄_X) ⊂ D^b(𝔄_X): full subcategory consisting of complexes M[•] such that Hⁱ(M[•]) ∈ Mod_h(𝔄_X)



Categories of twisted *D*-modules

 \mathscr{A}_X has a canonical order filtration induced from the isomorphisms $\mathscr{A}_X|_{U_i} \simeq \mathscr{D}_{U_i}.$

 $\operatorname{gr} \mathscr{A}_X \simeq \pi_* \mathcal{O}_{\mathcal{T}^*X}, \quad \pi \colon \mathcal{T}^*X \to X \text{ projection}$

For an \mathscr{A}_X -module \mathcal{M} with a good filtration (\Rightarrow coherent),

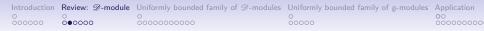
$$\operatorname{Ch}(\mathcal{M}) := \operatorname{supp}(\mathcal{O}_{\mathcal{T}^*X} \otimes_{\pi^{-1}\pi_*\mathcal{O}_{\mathcal{T}^*X}} \pi^{-1}\operatorname{gr}(\mathcal{M})) \subset \mathcal{T}^*X.$$

Definition

 \mathcal{M} is said to be holonomic if dim $\operatorname{Ch}(\mathcal{M}) \leq \dim(X)$ (i.e. $\mathcal{M} = 0$ or dim $\operatorname{Ch}(\mathcal{M}) = \dim(X)$)

(A holonomic \mathscr{A}_X -module has finite length.)

- Mod_h(A_X): category of holonomic A_X-modules
- D^b_h(𝔄_X) ⊂ D^b(𝔄_X): full subcategory consisting of complexes M[•] such that Hⁱ(M[•]) ∈ Mod_h(𝔄_X)



Categories of twisted *D*-modules

 \mathscr{A}_X has a canonical order filtration induced from the isomorphisms $\mathscr{A}_X|_{U_i} \simeq \mathscr{D}_{U_i}.$

 $\operatorname{gr} \mathscr{A}_X \simeq \pi_* \mathcal{O}_{\mathcal{T}^* X}, \quad \pi \colon \mathcal{T}^* X \to X \text{ projection}$

For an \mathscr{A}_X -module \mathcal{M} with a good filtration (\Rightarrow coherent),

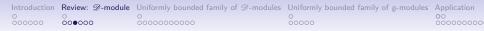
$$\mathrm{Ch}(\mathcal{M}) := \mathrm{supp}(\mathcal{O}_{\mathcal{T}^*X} \otimes_{\pi^{-1}\pi_*\mathcal{O}_{\mathcal{T}^*X}} \pi^{-1}\mathrm{gr}(\mathcal{M})) \subset \mathcal{T}^*X.$$

Definition

 \mathcal{M} is said to be holonomic if dim $\operatorname{Ch}(\mathcal{M}) \leq \dim(X)$ (i.e. $\mathcal{M} = 0$ or dim $\operatorname{Ch}(\mathcal{M}) = \dim(X)$)

(A holonomic \mathscr{A}_X -module has finite length.)

- $Mod_h(\mathscr{A}_X)$: category of holonomic \mathscr{A}_X -modules
- D^b_h(𝒜_X) ⊂ D^b(𝒜_X): full subcategory consisting of complexes M[•] such that Hⁱ(M[•]) ∈ Mod_h(𝒜_X)



• $\operatorname{Aut}(\mathscr{D}_X) \simeq \mathcal{Z}(X)$ (the space of closed 1-forms)

For $\omega \in \mathcal{Z}(X)$, set

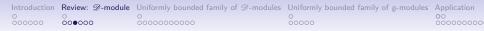
 $A_{\omega}(T) = T - \omega(T) \quad (T \in \mathcal{T}_X).$

 A_{ω} extends uniquely to an automorphism of \mathscr{D}_X . Let $f: Y \to X$ be a morphism between smooth varieties.

(pull back) $f^{\#}$: Aut $(\mathscr{D}_{U}) \to \operatorname{Aut}(\mathscr{D}_{f^{-1}(U)})$ $(U \subset X \text{ open})$

- $f^{\#} \mathscr{A}_X$: TDO on Y ('pull-back' of \mathscr{A}_X)
- *f*[#]: functor of the categories of TODs

(direct image) $Df_+: D_h^b(f^\# \mathscr{A}_X) \to D_h^b(\mathscr{A}_X)$ (inverse image) $Lf^*: D_h^b(\mathscr{A}_X) \to D_h^b(f^\# \mathscr{A}_X)$.



• $\operatorname{Aut}(\mathscr{D}_X) \simeq \mathcal{Z}(X)$ (the space of closed 1-forms) For $\omega \in \mathcal{Z}(X)$, set

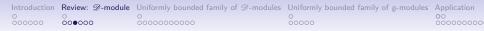
$A_{\omega}(T) = T - \omega(T) \quad (T \in \mathcal{T}_X).$

 A_{ω} extends uniquely to an automorphism of \mathscr{D}_X . Let $f: Y \to X$ be a morphism between smooth varieties.

(pull back) $f^{\#}$: Aut $(\mathscr{D}_{U}) \to \operatorname{Aut}(\mathscr{D}_{f^{-1}(U)})$ $(U \subset X \text{ open})$

- $f^{\#} \mathscr{A}_X$: TDO on Y ('pull-back' of \mathscr{A}_X)
- *f*[#]: functor of the categories of TODs

(direct image) $Df_+: D_h^b(f^\#\mathscr{A}_X) \to D_h^b(\mathscr{A}_X)$ (inverse image) $Lf^*: D_h^b(\mathscr{A}_X) \to D_h^b(f^\#\mathscr{A}_X).$



• $\operatorname{Aut}(\mathscr{D}_X) \simeq \mathcal{Z}(X)$ (the space of closed 1-forms) For $\omega \in \mathcal{Z}(X)$, set

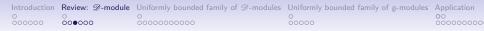
$$A_\omega(T)=T-\omega(T) \quad (T\in \mathcal{T}_X).$$

 A_{ω} extends uniquely to an automorphism of \mathscr{D}_X . Let $f: Y \to X$ be a morphism between smooth varieties.

(pull back) $f^{\#}$: Aut $(\mathscr{D}_{U}) \to \operatorname{Aut}(\mathscr{D}_{f^{-1}(U)})$ $(U \subset X \text{ open})$

- $f^{\#} \mathscr{A}_X$: TDO on Y ('pull-back' of \mathscr{A}_X)
- *f*[#]: functor of the categories of TODs

(direct image) $Df_+: D_h^b(f^\# \mathscr{A}_X) \to D_h^b(\mathscr{A}_X)$ (inverse image) $Lf^*: D_h^b(\mathscr{A}_X) \to D_h^b(f^\# \mathscr{A}_X)$.



• $\operatorname{Aut}(\mathscr{D}_X) \simeq \mathcal{Z}(X)$ (the space of closed 1-forms) For $\omega \in \mathcal{Z}(X)$, set

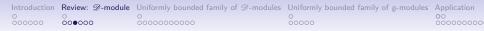
$$A_\omega(T)=T-\omega(T) \quad (T\in \mathcal{T}_X).$$

 A_{ω} extends uniquely to an automorphism of \mathscr{D}_X . Let $f: Y \to X$ be a morphism between smooth varieties.

$$(\mathsf{pull back}) \ f^{\#} \colon \mathrm{Aut}(\mathscr{D}_{U}) \to \mathrm{Aut}(\mathscr{D}_{f^{-1}(U)}) \quad (U \subset X \ \mathsf{open})$$

- $f^{\#}\mathscr{A}_X$: TDO on Y ('pull-back' of \mathscr{A}_X)
- *f*[#]: functor of the categories of TODs

(direct image) $Df_+: D_h^b(f^\# \mathscr{A}_X) \to D_h^b(\mathscr{A}_X)$ (inverse image) $Lf^*: D_h^b(\mathscr{A}_X) \to D_h^b(f^\# \mathscr{A}_X)$.



• $\operatorname{Aut}(\mathscr{D}_X) \simeq \mathcal{Z}(X)$ (the space of closed 1-forms) For $\omega \in \mathcal{Z}(X)$, set

$$A_\omega(T)=T-\omega(T) \quad (T\in \mathcal{T}_X).$$

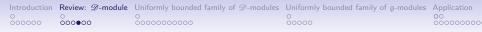
 A_{ω} extends uniquely to an automorphism of \mathscr{D}_X . Let $f: Y \to X$ be a morphism between smooth varieties.

$$(\mathsf{pull back}) \ f^{\#} \colon \mathrm{Aut}(\mathscr{D}_U) o \mathrm{Aut}(\mathscr{D}_{f^{-1}(U)}) \quad (U \subset X \ \mathsf{open})$$

- $f^{\#}\mathscr{A}_X$: TDO on Y ('pull-back' of \mathscr{A}_X)
- *f*[#]: functor of the categories of TODs

(direct image)
$$Df_+: D_h^b(f^\# \mathscr{A}_X) \to D_h^b(\mathscr{A}_X)$$

(inverse image) $Lf^*: D_h^b(\mathscr{A}_X) \to D_h^b(f^\# \mathscr{A}_X)$.



Multiplicities

Review Bernstein's work ('71, '72).

• $\mathcal{D}_{\mathbb{C}^n} := \Gamma(\mathscr{D}_{\mathbb{C}^n})$: algebra of differential operators with polynomial coefficients

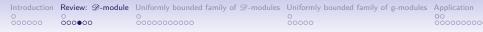
For a finitely generated $\mathcal{D}_{\mathbb{C}^n}$ -module M, the multiplicity m(M) and the dimension d(M) are defined by

$$\dim(F^{i}M) \sim \frac{m(M)}{d(M)!}i^{d(M)} \quad (i \to \infty),$$

where $(F^iM)_{i\geq 0}$ is a good filtration of M with respect to the Bernstein filtration of $\mathcal{D}_{\mathbb{C}^n}$.

Bernstein filtration:

$$F^{i}\mathcal{D}_{\mathbb{C}^{n}} = \bigoplus_{|\alpha|+|\beta| \leq i} \mathbb{C}z^{\alpha} \frac{\partial^{\beta}}{\partial z^{\beta}}$$



Multiplicities

Review Bernstein's work ('71, '72).

D_{Cⁿ} := Γ(D_{Cⁿ}): algebra of differential operators with polynomial coefficients

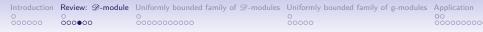
For a finitely generated $\mathcal{D}_{\mathbb{C}^n}$ -module M, the multiplicity m(M) and the dimension d(M) are defined by

$$\dim(F^{i}M) \sim \frac{m(M)}{d(M)!}i^{d(M)} \quad (i \to \infty),$$

where $(F^iM)_{i\geq 0}$ is a good filtration of M with respect to the Bernstein filtration of $\mathcal{D}_{\mathbb{C}^n}$.

Bernstein filtration:

$$F^{i}\mathcal{D}_{\mathbb{C}^{n}} = \bigoplus_{|\alpha|+|\beta| \leq i} \mathbb{C}z^{lpha} rac{\partial^{eta}}{\partial z^{eta}}$$



Multiplicities

Review Bernstein's work ('71, '72).

D_{Cⁿ} := Γ(D_{Cⁿ}): algebra of differential operators with polynomial coefficients

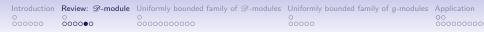
For a finitely generated $\mathcal{D}_{\mathbb{C}^n}$ -module M, the multiplicity m(M) and the dimension d(M) are defined by

$$\dim(F^iM)\sim rac{m(M)}{d(M)!}i^{d(M)}\quad (i o\infty),$$

where $(F^{i}M)_{i\geq 0}$ is a good filtration of M with respect to the Bernstein filtration of $\mathcal{D}_{\mathbb{C}^{n}}$.

Bernstein filtration:

$$F^{i}\mathcal{D}_{\mathbb{C}^{n}} = \bigoplus_{|\alpha|+|\beta|\leq i} \mathbb{C}z^{lpha} \frac{\partial^{eta}}{\partial z^{eta}}$$

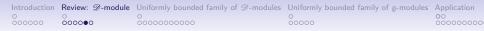


Fact Let L, M and N be finitely generated $\mathcal{D}_{\mathbb{C}^n}$ -module. 1. If $M \neq 0$, then $d(M) \geq n$. $d(M) \leq n \Leftrightarrow \mathscr{D}_{\mathbb{C}^n} \otimes_{\mathcal{D}_{\mathbb{C}^n}} M$ is holonomic. 2. $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ (exact) $d(M) = \max(d(L), d(N)),$ m(M) = m(L) + m(N) (if d(L) = d(N)). 3. $d(M) \leq n \Rightarrow \operatorname{Len}_{\mathcal{D}_{\mathbb{C}^n}}(M) \leq m(M)$.

For $\mathcal{M}^{\bullet} \in D_{h}^{b}(\mathscr{D}_{\mathbb{C}^{n}})$, set

$$m(\mathcal{M}^{\bullet}) := \sum_{i} m(\Gamma(H^{i}(\mathcal{M}^{\bullet}))).$$

Then we have

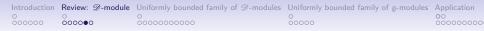


Fact Let L, M and N be finitely generated $\mathcal{D}_{\mathbb{C}^n}$ -module. 1. If $M \neq 0$, then $d(M) \geq n$. $d(M) \leq n \Leftrightarrow \mathscr{D}_{\mathbb{C}^n} \otimes_{\mathcal{D}_{\mathbb{C}^n}} M$ is holonomic. 2. $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ (exact) $d(M) = \max(d(L), d(N)),$ m(M) = m(L) + m(N) (if d(L) = d(N)). 3. $d(M) \leq n \Rightarrow \operatorname{Len}_{\mathcal{D}_{\mathbb{C}^n}}(M) \leq m(M)$.

For $\mathcal{M}^{\bullet} \in D^b_h(\mathscr{D}_{\mathbb{C}^n})$, set

$$m(\mathcal{M}^{\bullet}) := \sum_{i} m(\Gamma(H^{i}(\mathcal{M}^{\bullet}))).$$

Then we have

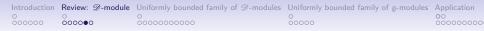


Fact
Let L, M and N be finitely generated
$$\mathcal{D}_{\mathbb{C}^n}$$
-module.
1. If $M \neq 0$, then $d(M) \geq n$.
 $d(M) \leq n \Leftrightarrow \mathscr{D}_{\mathbb{C}^n} \otimes_{\mathcal{D}_{\mathbb{C}^n}} M$ is holonomic.
2. $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ (exact)
 $d(M) = \max(d(L), d(N)),$
 $m(M) = m(L) + m(N)$ (if $d(L) = d(N)$).
3. $d(M) \leq n \Rightarrow \operatorname{Len}_{\mathcal{D}_{nn}}(M) \leq m(M)$.

For $\mathcal{M}^{\bullet} \in D^b_h(\mathscr{D}_{\mathbb{C}^n})$, set

$$m(\mathcal{M}^{\bullet}) := \sum_{i} m(\Gamma(H^{i}(\mathcal{M}^{\bullet}))).$$

Then we have

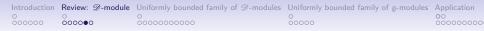


Fact
Let L, M and N be finitely generated
$$\mathcal{D}_{\mathbb{C}^n}$$
-module.
1. If $M \neq 0$, then $d(M) \geq n$.
 $d(M) \leq n \Leftrightarrow \mathscr{D}_{\mathbb{C}^n} \otimes_{\mathcal{D}_{\mathbb{C}^n}} M$ is holonomic.
2. $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ (exact)
 $d(M) = \max(d(L), d(N)),$
 $m(M) = m(L) + m(N)$ (if $d(L) = d(N)$).
3. $d(M) \leq n \Rightarrow \operatorname{Len}_{\mathcal{D}_{\mathbb{C}^n}}(M) \leq m(M)$.

For $\mathcal{M}^{\bullet} \in D^b_h(\mathscr{D}_{\mathbb{C}^n})$, set

$$m(\mathcal{M}^{\bullet}) := \sum_{i} m(\Gamma(H^{i}(\mathcal{M}^{\bullet}))).$$

Then we have



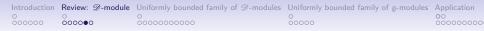
Fact Let L, M and N be finitely generated $\mathcal{D}_{\mathbb{C}^n}$ -module. 1. If $M \neq 0$, then $d(M) \geq n$. $d(M) \leq n \Leftrightarrow \mathscr{D}_{\mathbb{C}^n} \otimes_{\mathcal{D}_{\mathbb{C}^n}} M$ is holonomic. 2. $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ (exact) $d(M) = \max(d(L), d(N)),$ m(M) = m(L) + m(N) (if d(L) = d(N)). 3. $d(M) \leq n \Rightarrow \operatorname{Len}_{\mathcal{D}_{\mathbb{C}^n}}(M) \leq m(M)$.

For $\mathcal{M}^{ullet}\in D^b_h(\mathscr{D}_{\mathbb{C}^n})$, set

$$m(\mathcal{M}^{\bullet}) := \sum_{i} m(\Gamma(H^{i}(\mathcal{M}^{\bullet}))).$$

Then we have

$$\operatorname{Len}_{\mathscr{D}_{\mathbb{C}^n}}(\mathcal{M}) \leq m(\mathcal{M}) \quad (\mathcal{M} \in \operatorname{Mod}_h(\mathscr{D}_{\mathbb{C}^n})).$$



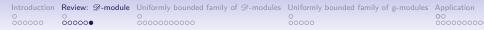
Fact
Let L, M and N be finitely generated
$$\mathcal{D}_{\mathbb{C}^n}$$
-module.
1. If $M \neq 0$, then $d(M) \geq n$.
 $d(M) \leq n \Leftrightarrow \mathscr{D}_{\mathbb{C}^n} \otimes_{\mathcal{D}_{\mathbb{C}^n}} M$ is holonomic.
2. $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ (exact)
 $d(M) = \max(d(L), d(N)),$
 $m(M) = m(L) + m(N)$ (if $d(L) = d(N)$).
3. $d(M) \leq n \Rightarrow \operatorname{Len}_{\mathcal{D}_{\mathbb{C}^n}}(M) \leq m(M)$.

For $\mathcal{M}^{ullet}\in D^b_h(\mathscr{D}_{\mathbb{C}^n})$, set

$$m(\mathcal{M}^{\bullet}) := \sum_{i} m(\Gamma(H^{i}(\mathcal{M}^{\bullet}))).$$

Then we have

$$\mathrm{Len}_{\mathscr{D}_{\mathbb{C}^n}}(\mathcal{M}) \leq \textit{m}(\mathcal{M}) \quad (\mathcal{M} \in \mathrm{Mod}_{\textit{h}}(\mathscr{D}_{\mathbb{C}^n})).$$



Multiplicity and functors

Proposition (Derived version of Bernstein's estimate) Let $f : \mathbb{C}^n \to \mathbb{C}^m$ be a morphism of varieties. Set $d := \max(1, \deg(f))$. For $\mathcal{M}^{\bullet} \in D_h^b(\mathscr{D}_{\mathbb{C}^n})$, $\mathcal{N}^{\bullet} \in D_h^b(\mathscr{D}_{\mathbb{C}^m})$, we have

$$\begin{split} m(Df_+(\mathcal{M}^{\bullet})) &\leq d^{n+m}m(\mathcal{M}^{\bullet}), \\ m(Lf^*(\mathcal{N}^{\bullet})) &\leq d^{n+m}m(\mathcal{N}^{\bullet}). \end{split}$$

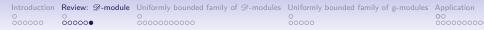
f is decomposed as

$$\mathbb{C}^n \xrightarrow{i} \mathbb{C}^n \oplus \mathbb{C}^m \xrightarrow{f'} \mathbb{C}^n \oplus \mathbb{C}^m \xrightarrow{p} \mathbb{C}^m,$$

$$i(x) = (x, 0), \quad f'(x, y) = (x, f(x) + y), \quad p(x, y) = y.$$

If m = 1,

$$\begin{split} &\Gamma(D^0 i_+(\mathcal{M})) \simeq \Gamma(\mathcal{M}) \boxtimes \mathcal{D}_{\mathbb{C}}/z_{n+1} \mathcal{D}_{\mathbb{C}} \quad (\mathcal{M} \in \mathrm{Mod}_h(\mathscr{D}_{\mathbb{C}^n})), \\ &\Gamma(L_0 i^*(\mathcal{M})) \simeq \Gamma(\mathcal{M})/z_{n+1} \Gamma(\mathcal{M}) \quad (\mathcal{M} \in \mathrm{Mod}_h(\mathscr{D}_{\mathbb{C}^{n+1}})), \\ &\Gamma(D^0 p_+(\mathcal{M})) \simeq \Gamma(\mathcal{M})/\frac{\partial}{\partial z_{n+1}} \Gamma(\mathcal{M}) \quad (\mathcal{M} \in \mathrm{Mod}_h(\mathscr{D}_{\mathbb{C}^n+1})), \\ &\Gamma(L_0 i^*(\mathcal{M})) \simeq \Gamma(\mathcal{M}) \boxtimes \Gamma(\mathcal{O}_{\mathbb{C}}) \quad (\mathcal{M} \in \mathrm{Mod}_h(\mathscr{D}_{\mathbb{C}^n})). \end{split}$$



Multiplicity and functors

Proposition (Derived version of Bernstein's estimate) Let $f : \mathbb{C}^n \to \mathbb{C}^m$ be a morphism of varieties. Set $d := \max(1, \deg(f))$. For $\mathcal{M}^{\bullet} \in D_h^b(\mathscr{D}_{\mathbb{C}^n})$, $\mathcal{N}^{\bullet} \in D_h^b(\mathscr{D}_{\mathbb{C}^m})$, we have

$$m(Df_+(\mathcal{M}^{ullet})) \leq d^{n+m}m(\mathcal{M}^{ullet}), \ m(Lf^*(\mathcal{N}^{ullet})) \leq d^{n+m}m(\mathcal{N}^{ullet}).$$

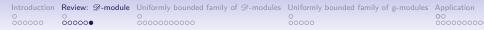
f is decomposed as

$$\mathbb{C}^{n} \xrightarrow{i} \mathbb{C}^{n} \oplus \mathbb{C}^{m} \xrightarrow{f'} \mathbb{C}^{n} \oplus \mathbb{C}^{m} \xrightarrow{p} \mathbb{C}^{m},$$

$$i(x) = (x, 0), \quad f'(x, y) = (x, f(x) + y), \quad p(x, y) = y.$$

If m = 1

$$\begin{split} &\Gamma(D^0 i_+(\mathcal{M})) \simeq \Gamma(\mathcal{M}) \boxtimes \mathcal{D}_{\mathbb{C}}/z_{n+1} \mathcal{D}_{\mathbb{C}} \quad (\mathcal{M} \in \mathrm{Mod}_h(\mathscr{D}_{\mathbb{C}^n})), \\ &\Gamma(L_0 i^*(\mathcal{M})) \simeq \Gamma(\mathcal{M})/z_{n+1} \Gamma(\mathcal{M}) \quad (\mathcal{M} \in \mathrm{Mod}_h(\mathscr{D}_{\mathbb{C}^{n+1}})), \\ &\Gamma(D^0 p_+(\mathcal{M})) \simeq \Gamma(\mathcal{M})/\frac{\partial}{\partial z_{n+1}} \Gamma(\mathcal{M}) \quad (\mathcal{M} \in \mathrm{Mod}_h(\mathscr{D}_{\mathbb{C}^n})), \\ &\Gamma(L_0 i^*(\mathcal{M})) \simeq \Gamma(\mathcal{M}) \boxtimes \Gamma(\mathcal{O}_{\mathbb{C}}) \quad (\mathcal{M} \in \mathrm{Mod}_h(\mathscr{D}_{\mathbb{C}^n})). \end{split}$$



Multiplicity and functors

Proposition (Derived version of Bernstein's estimate) Let $f: \mathbb{C}^n \to \mathbb{C}^m$ be a morphism of varieties. Set $d := \max(1, \deg(f))$. For $\mathcal{M}^{\bullet} \in D_h^b(\mathscr{D}_{\mathbb{C}^n})$, $\mathcal{N}^{\bullet} \in D_h^b(\mathscr{D}_{\mathbb{C}^m})$, we have

$$m(Df_+(\mathcal{M}^{ullet})) \leq d^{n+m}m(\mathcal{M}^{ullet}), \ m(Lf^*(\mathcal{N}^{ullet})) \leq d^{n+m}m(\mathcal{N}^{ullet}).$$

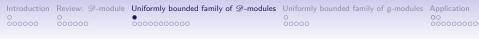
f is decomposed as

$$\mathbb{C}^{n} \xrightarrow{i} \mathbb{C}^{n} \oplus \mathbb{C}^{m} \xrightarrow{f'} \mathbb{C}^{n} \oplus \mathbb{C}^{m} \xrightarrow{p} \mathbb{C}^{m},$$

$$i(x) = (x, 0), \quad f'(x, y) = (x, f(x) + y), \quad p(x, y) = y.$$

If m = 1,

$$\begin{split} &\Gamma(D^0 i_+(\mathcal{M}))\simeq \Gamma(\mathcal{M})\boxtimes \mathcal{D}_{\mathbb{C}}/z_{n+1}\mathcal{D}_{\mathbb{C}} \quad (\mathcal{M}\in \mathrm{Mod}_h(\mathscr{D}_{\mathbb{C}^n})), \\ &\Gamma(L_0 i^*(\mathcal{M}))\simeq \Gamma(\mathcal{M})/z_{n+1}\Gamma(\mathcal{M}) \quad (\mathcal{M}\in \mathrm{Mod}_h(\mathscr{D}_{\mathbb{C}^{n+1}})), \\ &\Gamma(D^0 p_+(\mathcal{M}))\simeq \Gamma(\mathcal{M})/\frac{\partial}{\partial z_{n+1}}\Gamma(\mathcal{M}) \quad (\mathcal{M}\in \mathrm{Mod}_h(\mathscr{D}_{\mathbb{C}^{n+1}})), \\ &\Gamma(L_0 i^*(\mathcal{M}))\simeq \Gamma(\mathcal{M})\boxtimes \Gamma(\mathcal{O}_{\mathbb{C}}) \quad (\mathcal{M}\in \mathrm{Mod}_h(\mathscr{D}_{\mathbb{C}^n})). \end{split}$$



Outline

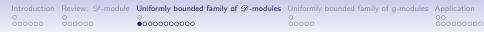
Introduction

Review: *D*-module

Uniformly bounded family of \mathcal{D} -modules

Uniformly bounded family of g-modules

Application



- X: smooth affine variety
- $\iota: X \hookrightarrow \mathbb{C}^n$: closed embedding

For $\mathcal{M}^{\bullet} \in D_h^b(\mathscr{D}_X)$, set

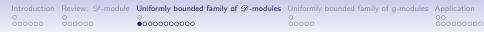
$$m_{\iota}(\mathcal{M}^{\bullet}) := m(D\iota_{+}(\mathcal{M}^{\bullet})).$$

By Kashiwara's equivalence,

$$H^0 \circ D\iota_+ \colon \mathrm{Mod}_h(\mathscr{D}_X) \to \mathrm{Mod}_h^{\iota(X)}(\mathscr{D}_{\mathbb{C}^n})$$

gives an equivalence of categories. $(\mathcal{N} \in \operatorname{Mod}_{h}^{\iota(X)}(\mathscr{D}_{\mathbb{C}^{n}}) \Leftrightarrow \operatorname{supp}(\mathcal{N}) \subset \iota(X) \text{ and } \mathcal{N} \in \operatorname{Mod}_{h}(\mathscr{D}_{\mathbb{C}^{n}}))$ Then we have

 $\operatorname{Len}_{\mathscr{D}_X}(\mathcal{M}) \leq m_\iota(\mathcal{M}).$



- X: smooth affine variety
- $\iota: X \hookrightarrow \mathbb{C}^n$: closed embedding

For $\mathcal{M}^{ullet}\in D^b_h(\mathscr{D}_X)$, set

$$m_{\iota}(\mathcal{M}^{\bullet}) := m(D\iota_{+}(\mathcal{M}^{\bullet})).$$

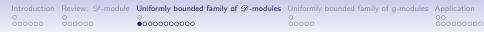
By Kashiwara's equivalence,

$$H^0 \circ D\iota_+ \colon \mathrm{Mod}_h(\mathscr{D}_X) \to \mathrm{Mod}_h^{\iota(X)}(\mathscr{D}_{\mathbb{C}^n})$$

gives an equivalence of categories.

 $(\mathcal{N} \in \mathrm{Mod}_{h}^{\iota(X)}(\mathscr{D}_{\mathbb{C}^{n}}) \Leftrightarrow \mathrm{supp}(\mathcal{N}) \subset \iota(X) \text{ and } \mathcal{N} \in \mathrm{Mod}_{h}(\mathscr{D}_{\mathbb{C}^{n}}))$ Then we have

 $\operatorname{Len}_{\mathscr{D}_X}(\mathcal{M}) \leq m_\iota(\mathcal{M}).$



- X: smooth affine variety
- $\iota: X \hookrightarrow \mathbb{C}^n$: closed embedding

For $\mathcal{M}^{ullet}\in D^b_h(\mathscr{D}_X)$, set

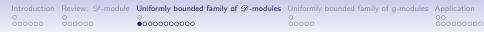
$$m_{\iota}(\mathcal{M}^{\bullet}) := m(D\iota_{+}(\mathcal{M}^{\bullet})).$$

By Kashiwara's equivalence,

$$H^0 \circ D\iota_+ \colon \operatorname{Mod}_h(\mathscr{D}_X) \to \operatorname{Mod}_h^{\iota(X)}(\mathscr{D}_{\mathbb{C}^n})$$

gives an equivalence of categories. $(\mathcal{N} \in \operatorname{Mod}_{h}^{\iota(X)}(\mathscr{D}_{\mathbb{C}^{n}}) \Leftrightarrow \operatorname{supp}(\mathcal{N}) \subset \iota(X) \text{ and } \mathcal{N} \in \operatorname{Mod}_{h}(\mathscr{D}_{\mathbb{C}^{n}}))$ Then we have

 $\operatorname{Len}_{\mathscr{D}_X}(\mathcal{M}) \leq m_\iota(\mathcal{M}).$



- X: smooth affine variety
- $\iota: X \hookrightarrow \mathbb{C}^n$: closed embedding

For $\mathcal{M}^{ullet}\in D^b_h(\mathscr{D}_X)$, set

$$m_{\iota}(\mathcal{M}^{\bullet}) := m(D\iota_{+}(\mathcal{M}^{\bullet})).$$

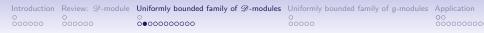
By Kashiwara's equivalence,

$$H^0 \circ D\iota_+ \colon \operatorname{Mod}_h(\mathscr{D}_X) \to \operatorname{Mod}_h^{\iota(X)}(\mathscr{D}_{\mathbb{C}^n})$$

gives an equivalence of categories.

 $(\mathcal{N} \in \mathrm{Mod}_h^{\iota(X)}(\mathscr{D}_{\mathbb{C}^n}) \Leftrightarrow \mathrm{supp}(\mathcal{N}) \subset \iota(X) \text{ and } \mathcal{N} \in \mathrm{Mod}_h(\mathscr{D}_{\mathbb{C}^n}))$ Then we have

$$\operatorname{Len}_{\mathscr{D}_X}(\mathcal{M}) \leq m_\iota(\mathcal{M}).$$



Affine case: functors

Proposition

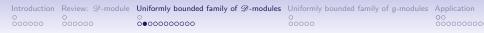
Let $f: X \to Y$ be a morphism between affine smooth varieties. Fix closed embeddings $\iota: X \to \mathbb{C}^n$ and $\iota': Y \to \mathbb{C}^m$. Then $\exists C > 0$ s.t. $\forall \mathcal{M}^{\bullet} \in D_h^b(\mathscr{D}_X), \ \mathcal{N}^{\bullet} \in D_h^b(\mathscr{D}_Y),$

$$egin{aligned} &m_{\iota'}(Df_+(\mathcal{M}^ullet)) \leq C \cdot m_\iota(\mathcal{M}^ullet), \ &m_\iota(Lf^*(\mathcal{N}^ullet)) \leq C \cdot m_{\iota'}(\mathcal{N}^ullet). \end{aligned}$$

Note that f extends to a morphism $\tilde{f} : \mathbb{C}^n \to \mathbb{C}^m$:

If X = Y and f = id, then

$$C^{-1} \cdot m_{\iota'}(\mathcal{M}^{ullet}) \leq m_{\iota}(\mathcal{M}^{ullet}) \leq C \cdot m_{\iota'}(\mathcal{M}^{ullet}).$$



Affine case: functors

Proposition

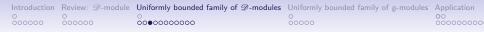
Let $f: X \to Y$ be a morphism between affine smooth varieties. Fix closed embeddings $\iota: X \to \mathbb{C}^n$ and $\iota': Y \to \mathbb{C}^m$. Then $\exists C > 0$ s.t. $\forall \mathcal{M}^{\bullet} \in D_h^b(\mathscr{D}_X), \ \mathcal{N}^{\bullet} \in D_h^b(\mathscr{D}_Y),$

$$egin{aligned} &m_{\iota'}(Df_+(\mathcal{M}^ullet)) \leq C \cdot m_\iota(\mathcal{M}^ullet), \ &m_\iota(Lf^*(\mathcal{N}^ullet)) \leq C \cdot m_{\iota'}(\mathcal{N}^ullet). \end{aligned}$$

Note that f extends to a morphism $\tilde{f} : \mathbb{C}^n \to \mathbb{C}^m$:

If X = Y and f = id, then

$$C^{-1} \cdot m_{\iota'}(\mathcal{M}^{ullet}) \leq m_{\iota}(\mathcal{M}^{ullet}) \leq C \cdot m_{\iota'}(\mathcal{M}^{ullet}).$$

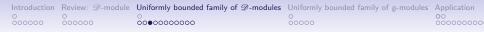


𝔄_{X,Λ} := (𝔄_{X,λ})_{λ∈Λ}: family of TDOs on a smooth variety X

- 1. finite affine open covering $X = \bigcup_i U_i$
- 2. closed embeddings $\iota_i \colon U_i \to \mathbb{C}^{n_i}$
- 3. local trivializations $\Phi_{i,\lambda} \colon \mathscr{A}_{X,\lambda}|_{U_i} \xrightarrow{\simeq} \mathscr{D}_{U_i}$

If the above data is given, we can define 'multiplicities'

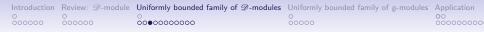
$$m(\mathcal{M}_{\lambda}) := \sum_{i} m_{\iota_{i}}(\mathcal{M}_{\lambda}|_{U_{i}}) \quad ((\mathcal{M}_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda} \operatorname{Mod}_{h}(\mathscr{A}_{X,\lambda})).$$



- 𝔄_{X,Λ} := (𝔄_{X,λ})_{λ∈Λ}: family of TDOs on a smooth variety X
- 1. finite affine open covering $X = \bigcup_i U_i$
- 2. closed embeddings $\iota_i \colon U_i \to \mathbb{C}^{n_i}$
- 3. local trivializations $\Phi_{i,\lambda} \colon \mathscr{A}_{X,\lambda}|_{U_i} \xrightarrow{\simeq} \mathscr{D}_{U_i}$

If the above data is given, we can define 'multiplicities'

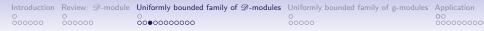
$$m(\mathcal{M}_{\lambda}) := \sum_{i} m_{\iota_{i}}(\mathcal{M}_{\lambda}|_{U_{i}}) \quad ((\mathcal{M}_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda} \operatorname{Mod}_{h}(\mathscr{A}_{X,\lambda})).$$



- 𝔄_{X,Λ} := (𝔄_{X,λ})_{λ∈Λ}: family of TDOs on a smooth variety X
- 1. finite affine open covering $X = \bigcup_i U_i$
- 2. closed embeddings $\iota_i \colon U_i \to \mathbb{C}^{n_i}$
- 3. local trivializations $\Phi_{i,\lambda} \colon \mathscr{A}_{X,\lambda}|_{U_i} \xrightarrow{\simeq} \mathscr{D}_{U_i}$

If the above data is given, we can define 'multiplicities'

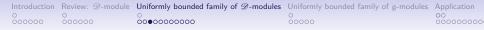
$$m(\mathcal{M}_{\lambda}) := \sum_{i} m_{\iota_{i}}(\mathcal{M}_{\lambda}|_{U_{i}}) \quad ((\mathcal{M}_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda} \operatorname{Mod}_{h}(\mathscr{A}_{X,\lambda})).$$



- 𝔄_{X,Λ} := (𝔄_{X,λ})_{λ∈Λ}: family of TDOs on a smooth variety X
- 1. finite affine open covering $X = \bigcup_i U_i$
- 2. closed embeddings $\iota_i \colon U_i \to \mathbb{C}^{n_i}$
- 3. local trivializations $\Phi_{i,\lambda} \colon \mathscr{A}_{X,\lambda}|_{U_i} \xrightarrow{\simeq} \mathscr{D}_{U_i}$

If the above data is given, we can define 'multiplicities'

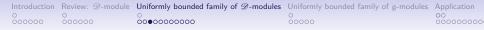
$$m(\mathcal{M}_{\lambda}) := \sum_{i} m_{\iota_{i}}(\mathcal{M}_{\lambda}|_{U_{i}}) \quad ((\mathcal{M}_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda} \operatorname{Mod}_{h}(\mathscr{A}_{X,\lambda})).$$



- 𝔄_{X,Λ} := (𝔄_{X,λ})_{λ∈Λ}: family of TDOs on a smooth variety X
- 1. finite affine open covering $X = \bigcup_i U_i$
- 2. closed embeddings $\iota_i \colon U_i \to \mathbb{C}^{n_i}$
- 3. local trivializations $\Phi_{i,\lambda} \colon \mathscr{A}_{X,\lambda}|_{U_i} \xrightarrow{\simeq} \mathscr{D}_{U_i}$

If the above data is given, we can define 'multiplicities'

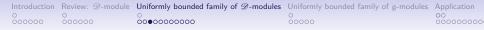
$$m(\mathcal{M}_{\lambda}) := \sum_{i} m_{\iota_{i}}(\mathcal{M}_{\lambda}|_{U_{i}}) \quad ((\mathcal{M}_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda} \operatorname{Mod}_{h}(\mathscr{A}_{X,\lambda})).$$



- $\mathscr{A}_{X,\Lambda} := (\mathscr{A}_{X,\lambda})_{\lambda \in \Lambda}$: family of TDOs on a smooth variety X
- 1. finite affine open covering $X = \bigcup_i U_i$
- 2. closed embeddings $\iota_i \colon U_i \to \mathbb{C}^{n_i}$
- 3. local trivializations $\Phi_{i,\lambda} \colon \mathscr{A}_{X,\lambda}|_{U_i} \xrightarrow{\simeq} \mathscr{D}_{U_i}$

If the above data is given, we can define 'multiplicities'

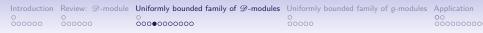
$$m(\mathcal{M}_{\lambda}) := \sum_{i} m_{\iota_{i}}(\mathcal{M}_{\lambda}|_{U_{i}}) \quad ((\mathcal{M}_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda} \operatorname{Mod}_{h}(\mathscr{A}_{X,\lambda})).$$



- $\mathscr{A}_{X,\Lambda} := (\mathscr{A}_{X,\lambda})_{\lambda \in \Lambda}$: family of TDOs on a smooth variety X
- 1. finite affine open covering $X = \bigcup_i U_i$
- 2. closed embeddings $\iota_i \colon U_i \to \mathbb{C}^{n_i}$
- 3. local trivializations $\Phi_{i,\lambda} \colon \mathscr{A}_{X,\lambda}|_{U_i} \xrightarrow{\simeq} \mathscr{D}_{U_i}$

If the above data is given, we can define 'multiplicities'

$$m(\mathcal{M}_{\lambda}) := \sum_{i} m_{\iota_{i}}(\mathcal{M}_{\lambda}|_{U_{i}}) \quad ((\mathcal{M}_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda} \operatorname{Mod}_{h}(\mathscr{A}_{X,\lambda})).$$



Twist and multiplicity

Let X be an affine smooth variety. For $\omega \in \mathcal{Z}(X)(\simeq \operatorname{Aut}(\mathscr{D}_X))$ and $\mathcal{M}^{\bullet} \in D_h^b(\mathscr{D}_X)$,

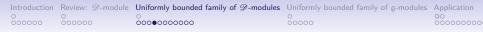
• $(\mathcal{M}^{\bullet})^{\omega}$: complex twisted by $A_{\omega} \in \operatorname{Aut}(\mathscr{D}_X)$

Proposition

Let $\iota: X \hookrightarrow \mathbb{C}^n$ be a closed embedding and $W \subset \mathcal{Z}(X)$ a finite-dimensional subspace. Then $\exists C > 0$ s.t. $\forall \mathcal{M}^{\bullet} \in D_h^b(\mathscr{D}_X)$, $\omega \in W$

$$m_\iota((\mathcal{M}^ullet)^\omega) \leq C \cdot m_\iota(\mathcal{M}).$$

Remark dim $(W) < \infty$ is essential. In fact, for $\omega \in \mathcal{Z}(\mathbb{C})$ with $A_{\omega}(d/dz) = d/dz - z^{n}$, we have $m(\mathbb{C}[z]^{\omega}) = \max(n, 1)$.



Twist and multiplicity

Let X be an affine smooth variety. For $\omega \in \mathcal{Z}(X)(\simeq \operatorname{Aut}(\mathscr{D}_X))$ and $\mathcal{M}^{\bullet} \in D_h^b(\mathscr{D}_X)$,

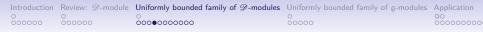
• $(\mathcal{M}^{\bullet})^{\omega}$: complex twisted by $A_{\omega} \in \operatorname{Aut}(\mathscr{D}_X)$

Proposition

Let $\iota: X \hookrightarrow \mathbb{C}^n$ be a closed embedding and $W \subset \mathcal{Z}(X)$ a finite-dimensional subspace. Then $\exists C > 0$ s.t. $\forall \mathcal{M}^{\bullet} \in D_h^b(\mathscr{D}_X)$, $\omega \in W$

$$m_\iota((\mathcal{M}^ullet)^\omega) \leq C \cdot m_\iota(\mathcal{M}).$$

Remark dim $(W) < \infty$ is essential. In fact, for $\omega \in \mathcal{Z}(\mathbb{C})$ with $A_{\omega}(d/dz) = d/dz - z^{n}$, we have $m(\mathbb{C}[z]^{\omega}) = \max(n, 1)$.



Twist and multiplicity

Let X be an affine smooth variety. For $\omega \in \mathcal{Z}(X)(\simeq \operatorname{Aut}(\mathscr{D}_X))$ and $\mathcal{M}^{\bullet} \in D_h^b(\mathscr{D}_X)$,

• $(\mathcal{M}^{\bullet})^{\omega}$: complex twisted by $A_{\omega} \in \operatorname{Aut}(\mathscr{D}_X)$

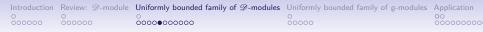
Proposition

Let $\iota: X \hookrightarrow \mathbb{C}^n$ be a closed embedding and $W \subset \mathcal{Z}(X)$ a finite-dimensional subspace. Then $\exists C > 0$ s.t. $\forall \mathcal{M}^{\bullet} \in D_h^b(\mathscr{D}_X)$, $\omega \in W$

$$m_\iota((\mathcal{M}^ullet)^\omega) \leq C \cdot m_\iota(\mathcal{M}).$$

Remark

 $\dim(W) < \infty$ is essential. In fact, for $\omega \in \mathcal{Z}(\mathbb{C})$ with $A_{\omega}(d/dz) = d/dz - z^n$, we have $m(\mathbb{C}[z]^{\omega}) = \max(n, 1)$.



𝔄_{X,Λ} := (𝔄_{X,λ})_{λ∈Λ}: family of TDOs on a smooth variety X

Definition

 (\mathcal{U}, Φ) : trivialization of $\mathscr{A}_{X,\Lambda} \stackrel{\text{def}}{\Longrightarrow}$ • \mathcal{U} is an open covering of X

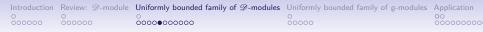
• $\Phi_{\lambda}^{U} \colon \mathscr{A}_{X,\lambda}|_{U} \xrightarrow{\simeq} \mathscr{D}_{U} (U \in \mathcal{U}, \lambda \in \Lambda)$

Definition $(\mathcal{U}, \Phi), (\mathcal{V}, \Psi)$: trivializations of $\mathscr{A}_{X,\Lambda}$, $(\mathcal{U}, \Phi) \sim (\mathcal{V}, \Psi) \stackrel{\text{def}}{\Longrightarrow}$ $\left\{ \Phi^U_{\lambda} \circ (\Psi^V_{\lambda})^{-1} \in \operatorname{Aut}(\mathscr{D}_{U \cap V}) : \lambda \in \Lambda \right\} \subset \mathcal{Z}(U \cap V)$ is contained in a finite-dimensional subspace $(\forall U \in \mathcal{U}, V \in \mathcal{U}).$

 (\mathcal{U}, Φ) is said to be bounded if $(\mathcal{U}, \Phi) \sim (\mathcal{U}, \Phi)$.

 \sim is not an equivalence relation of trivializations.

Proposition



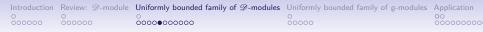
• $\mathscr{A}_{X,\Lambda} := (\mathscr{A}_{X,\lambda})_{\lambda \in \Lambda}$: family of TDOs on a smooth variety X

Definition

 (\mathcal{U}, Φ) : trivialization of $\mathscr{A}_{X,\Lambda} \stackrel{\text{def}}{\Longrightarrow}$

- \mathcal{U} is an open covering of X
- $\Phi_{\lambda}^{U} \colon \mathscr{A}_{X,\lambda}|_{U} \xrightarrow{\simeq} \mathscr{D}_{U} (U \in \mathcal{U}, \lambda \in \Lambda)$

Definition $(\mathcal{U}, \Phi), (\mathcal{V}, \Psi)$: trivializations of $\mathscr{A}_{X,\Lambda}$, $(\mathcal{U}, \Phi) \sim (\mathcal{V}, \Psi) \stackrel{\text{def}}{\Longrightarrow}$ $\left\{ \Phi^{\mathcal{U}}_{\lambda} \circ (\Psi^{\mathcal{V}}_{\lambda})^{-1} \in \operatorname{Aut}(\mathscr{D}_{\mathcal{U} \cap \mathcal{V}}) : \lambda \in \Lambda \right\} \subset \mathcal{Z}(\mathcal{U} \cap \mathcal{V})$ is contained in a finite-dimensional subspace $(\forall \mathcal{U} \in \mathcal{U}, \mathcal{V} \in \mathcal{U}).$ (\mathcal{U}, Φ) is said to be bounded if $(\mathcal{U}, \Phi) \sim (\mathcal{U}, \Phi).$ \sim is not an equivalence relation of trivializations. Proposition



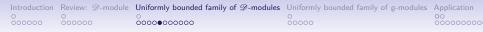
• $\mathscr{A}_{X,\Lambda} := (\mathscr{A}_{X,\lambda})_{\lambda \in \Lambda}$: family of TDOs on a smooth variety X

Definition

 (\mathcal{U}, Φ) : trivialization of $\mathscr{A}_{X,\Lambda} \stackrel{\text{def}}{\Longrightarrow}$

- \mathcal{U} is an open covering of X
- $\Phi_{\lambda}^{U} \colon \mathscr{A}_{X,\lambda}|_{U} \xrightarrow{\simeq} \mathscr{D}_{U} (U \in \mathcal{U}, \lambda \in \Lambda)$

Definition $(\mathcal{U}, \Phi), (\mathcal{V}, \Psi)$: trivializations of $\mathscr{A}_{X,\Lambda},$ $(\mathcal{U}, \Phi) \sim (\mathcal{V}, \Psi) \stackrel{\text{def}}{\Longrightarrow} \{\Phi^U_{\lambda} \circ (\Psi^V_{\lambda})^{-1} \in \operatorname{Aut}(\mathscr{D}_{U \cap V}) : \lambda \in \Lambda\} \subset \mathcal{Z}(U \cap V)$ is contained in a finite-dimensional subspace $(\forall U \in \mathcal{U}, V \in \mathcal{U}).$ (\mathcal{U}, Φ) is said to be bounded if $(\mathcal{U}, \Phi) \sim (\mathcal{U}, \Phi).$ \sim is not an equivalence relation of trivializations. Proposition



• $\mathscr{A}_{X,\Lambda} := (\mathscr{A}_{X,\lambda})_{\lambda \in \Lambda}$: family of TDOs on a smooth variety X

Definition

 (\mathcal{U}, Φ) : trivialization of $\mathscr{A}_{X,\Lambda} \stackrel{\text{def}}{\Longrightarrow}$

- *U* is an open covering of *X*
- $\Phi^U_{\lambda} : \mathscr{A}_{X,\lambda}|_U \xrightarrow{\simeq} \mathscr{D}_U (U \in \mathcal{U}, \lambda \in \Lambda)$

Definition $(\mathcal{U}, \Phi), (\mathcal{V}, \Psi)$: trivializations of $\mathscr{A}_{X,\Lambda}$,

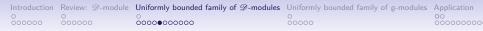
 $(\mathcal{U}, \Phi) \sim (\mathcal{V}, \Psi) \stackrel{\text{def}}{\Longrightarrow}$ $\left\{ \Phi^U_{\lambda} \circ (\Psi^V_{\lambda})^{-1} \in \operatorname{Aut}(\mathcal{D}_{U \cap V}) \colon \lambda \in \Lambda \right\} \subset \mathcal{Z}(U \cap V)$

is contained in a finite-dimensional subspace $(\forall U \in \mathcal{U}, V \in \mathcal{U}).$

 (\mathcal{U}, Φ) is said to be bounded if $(\mathcal{U}, \Phi) \sim (\mathcal{U}, \Phi)$.

 \sim is not an equivalence relation of trivializations.

Proposition



• $\mathscr{A}_{X,\Lambda} := (\mathscr{A}_{X,\lambda})_{\lambda \in \Lambda}$: family of TDOs on a smooth variety X

Definition

 (\mathcal{U}, Φ) : trivialization of $\mathscr{A}_{X,\Lambda} \stackrel{\text{def}}{\Longrightarrow}$

- *U* is an open covering of *X*
- $\Phi^U_{\lambda} : \mathscr{A}_{X,\lambda}|_U \xrightarrow{\simeq} \mathscr{D}_U (U \in \mathcal{U}, \lambda \in \Lambda)$

Definition $(\mathcal{U}, \Phi), (\mathcal{V}, \Psi)$: trivializations of $\mathscr{A}_{X,\Lambda}$,

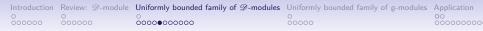
$$(\mathcal{U}, \Phi) \sim (\mathcal{V}, \Psi) \stackrel{\mathsf{def}}{\Longrightarrow} \\ \left\{ \Phi^U_\lambda \circ (\Psi^V_\lambda)^{-1} \in \operatorname{Aut}(\mathscr{D}_{U \cap V}) \colon \lambda \in \Lambda \right\} \subset \mathcal{Z}(U \cap V)$$

is contained in a finite-dimensional subspace $(\forall U \in \mathcal{U}, V \in \mathcal{U}).$

 (\mathcal{U}, Φ) is said to be bounded if $(\mathcal{U}, \Phi) \sim (\mathcal{U}, \Phi)$.

 \sim is not an equivalence relation of trivializations.

Proposition



• $\mathscr{A}_{X,\Lambda} := (\mathscr{A}_{X,\lambda})_{\lambda \in \Lambda}$: family of TDOs on a smooth variety X

Definition

 (\mathcal{U}, Φ) : trivialization of $\mathscr{A}_{X,\Lambda} \stackrel{\text{def}}{\Longrightarrow}$

- *U* is an open covering of *X*
- $\Phi^U_{\lambda} : \mathscr{A}_{X,\lambda}|_U \xrightarrow{\simeq} \mathscr{D}_U (U \in \mathcal{U}, \lambda \in \Lambda)$

Definition $(\mathcal{U}, \Phi), (\mathcal{V}, \Psi)$: trivializations of $\mathscr{A}_{X,\Lambda}$,

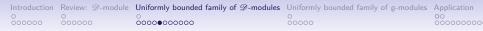
$$(\mathcal{U}, \Phi) \sim (\mathcal{V}, \Psi) \stackrel{\mathsf{def}}{\Longleftrightarrow} \\ \left\{ \Phi^U_\lambda \circ (\Psi^V_\lambda)^{-1} \in \operatorname{Aut}(\mathscr{D}_{U \cap V}) \colon \lambda \in \Lambda \right\} \subset \mathcal{Z}(U \cap V)$$

is contained in a finite-dimensional subspace $(\forall U \in \mathcal{U}, V \in \mathcal{U}).$

 (\mathcal{U}, Φ) is said to be bounded if $(\mathcal{U}, \Phi) \sim (\mathcal{U}, \Phi)$.

 \sim is not an equivalence relation of trivializations.

Proposition



• $\mathscr{A}_{X,\Lambda} := (\mathscr{A}_{X,\lambda})_{\lambda \in \Lambda}$: family of TDOs on a smooth variety X

Definition

 (\mathcal{U}, Φ) : trivialization of $\mathscr{A}_{X,\Lambda} \stackrel{\text{def}}{\iff}$

- *U* is an open covering of *X*
- $\Phi^U_{\lambda} : \mathscr{A}_{X,\lambda}|_U \xrightarrow{\simeq} \mathscr{D}_U (U \in \mathcal{U}, \lambda \in \Lambda)$

Definition $(\mathcal{U}, \Phi), (\mathcal{V}, \Psi)$: trivializations of $\mathscr{A}_{X,\Lambda}$,

$$(\mathcal{U}, \Phi) \sim (\mathcal{V}, \Psi) \stackrel{\text{def}}{\Longrightarrow}$$

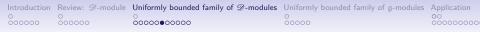
 $\left\{ \Phi^U_{\lambda} \circ (\Psi^V_{\lambda})^{-1} \in \operatorname{Aut}(\mathscr{D}_{U \cap V}) \colon \lambda \in \Lambda \right\} \subset \mathcal{Z}(U \cap V)$

is contained in a finite-dimensional subspace $(\forall U \in \mathcal{U}, V \in \mathcal{U}).$

 (\mathcal{U}, Φ) is said to be bounded if $(\mathcal{U}, \Phi) \sim (\mathcal{U}, \Phi)$.

 \sim is not an equivalence relation of trivializations.

Proposition



Definition

An equivalence class of bounded trivialization is called a bornology of $\mathscr{A}_{X,\Lambda}.$

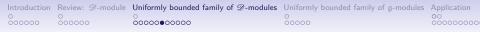
Definition

Let \mathcal{B} be a bornology of $\mathscr{A}_{\chi,\Lambda}$ and fix $(\mathcal{U}, \Phi) \in \mathcal{B}$ such that \mathcal{U} is an affine open covering. For $\mathcal{M} \in \prod_{\lambda} \operatorname{Mod}_h(\mathscr{A}_{\chi,\lambda})$,

 $\mathcal M$ is uniformly bounded w.r.t. $\mathcal B \stackrel{\mathrm{def}}{\Longleftrightarrow}$

 $m_{\iota}(\mathcal{M}_{\lambda}|_{U})$ is bounded on Λ $(\forall U \in \mathcal{U}, \text{ closed embedding } \iota \colon U \hookrightarrow \mathbb{C}^{n}).$

- Mod_{ub}(𝔄_{X,Λ}, 𝔅): full subcategory of ∏_λ Mod_h(𝔄_{X,λ}) consisting of uniformly bounded families
- D^b_{ub}(𝔄_{X,Λ}, 𝔅): full subcategory of ∏_λ D^b_h(𝔄_{X,λ}) consisting of complexes with Hⁱ(𝔄[•]) ∈ Mod_{ub}(𝔄_{X,Λ}, 𝔅), Hⁱ(𝔄[•]) = 0 (|i| >> 0)



Definition

An equivalence class of bounded trivialization is called a bornology of $\mathscr{A}_{X,\Lambda}.$

Definition

Let \mathcal{B} be a bornology of $\mathscr{A}_{X,\Lambda}$ and fix $(\mathcal{U}, \Phi) \in \mathcal{B}$ such that \mathcal{U} is an affine open covering. For $\mathcal{M} \in \prod_{\lambda} \operatorname{Mod}_{h}(\mathscr{A}_{X,\lambda})$,

 \mathcal{M} is uniformly bounded w.r.t. $\mathcal{B} \iff$

 $m_{\iota}(\mathcal{M}_{\lambda}|_{U})$ is bounded on Λ $(\forall U \in \mathcal{U}, \text{ closed embedding } \iota \colon U \hookrightarrow \mathbb{C}^{n}).$

- Mod_{ub}(𝔄_{X,Λ}, 𝔅): full subcategory of ∏_λ Mod_h(𝔄_{X,λ}) consisting of uniformly bounded families
- D^b_{ub}(𝔄_{X,Λ}, 𝔅): full subcategory of ∏_λ D^b_h(𝔄_{X,λ}) consisting of complexes with Hⁱ(𝔄[•]) ∈ Mod_{ub}(𝔄_{X,Λ}, 𝔅), Hⁱ(𝔄[•]) = 0 (|i| >> 0)

Definition

An equivalence class of bounded trivialization is called a bornology of $\mathscr{A}_{X,\Lambda}.$

Definition

Let \mathcal{B} be a bornology of $\mathscr{A}_{X,\Lambda}$ and fix $(\mathcal{U}, \Phi) \in \mathcal{B}$ such that \mathcal{U} is an affine open covering. For $\mathcal{M} \in \prod_{\lambda} \operatorname{Mod}_{h}(\mathscr{A}_{X,\lambda})$,

 \mathcal{M} is uniformly bounded w.r.t. $\mathcal{B} \stackrel{\mathsf{def}}{\iff}$

 $m_{\iota}(\mathcal{M}_{\lambda}|_{U})$ is bounded on Λ $(\forall U \in \mathcal{U}, \text{ closed embedding } \iota \colon U \hookrightarrow \mathbb{C}^{n}).$

- Mod_{ub}(𝔄_{X,Λ}, 𝔅): full subcategory of ∏_λ Mod_h(𝔄_{X,λ}) consisting of uniformly bounded families
- D^b_{ub}(𝔄_{X,Λ}, 𝔅): full subcategory of ∏_λ D^b_h(𝔄_{X,λ}) consisting of complexes with Hⁱ(𝔄[•]) ∈ Mod_{ub}(𝔄_{X,Λ}, 𝔅), Hⁱ(𝔄[•]) = 0 (|i| >> 0)

Definition

An equivalence class of bounded trivialization is called a bornology of $\mathscr{A}_{X,\Lambda}.$

Definition

Let \mathcal{B} be a bornology of $\mathscr{A}_{X,\Lambda}$ and fix $(\mathcal{U}, \Phi) \in \mathcal{B}$ such that \mathcal{U} is an affine open covering. For $\mathcal{M} \in \prod_{\lambda} \operatorname{Mod}_{h}(\mathscr{A}_{X,\lambda})$,

 \mathcal{M} is uniformly bounded w.r.t. $\mathcal{B} \stackrel{\text{def}}{\Longrightarrow}$

 $m_{\iota}(\mathcal{M}_{\lambda}|_{U})$ is bounded on Λ ($\forall U \in \mathcal{U}$, closed embedding $\iota \colon U \hookrightarrow \mathbb{C}^{n}$).

- Mod_{ub}(𝔄_{X,Λ}, 𝔅): full subcategory of ∏_λ Mod_h(𝔄_{X,λ}) consisting of uniformly bounded families
- D^b_{ub}(𝔄_{X,Λ}, 𝔅): full subcategory of ∏_λ D^b_h(𝔄_{X,λ}) consisting of complexes with Hⁱ(𝔄[•]) ∈ Mod_{ub}(𝔄_{X,Λ}, 𝔅), Hⁱ(𝔄[•]) = 0 (|i| >> 0)

Definition

An equivalence class of bounded trivialization is called a bornology of $\mathscr{A}_{X,\Lambda}.$

Definition

Let \mathcal{B} be a bornology of $\mathscr{A}_{X,\Lambda}$ and fix $(\mathcal{U}, \Phi) \in \mathcal{B}$ such that \mathcal{U} is an affine open covering. For $\mathcal{M} \in \prod_{\lambda} \operatorname{Mod}_{h}(\mathscr{A}_{X,\lambda})$,

 \mathcal{M} is uniformly bounded w.r.t. $\mathcal{B} \stackrel{\text{def}}{\Longrightarrow}$

 $m_{\iota}(\mathcal{M}_{\lambda}|_{U})$ is bounded on Λ ($\forall U \in \mathcal{U}$, closed embedding $\iota \colon U \hookrightarrow \mathbb{C}^{n}$).

- Mod_{ub}(𝔄_{X,Λ}, 𝔅): full subcategory of Π_λ Mod_h(𝔄_{X,λ}) consisting of uniformly bounded families
- D^b_{ub}(𝔄_{X,Λ}, 𝔅): full subcategory of ∏_λ D^b_h(𝔄_{X,λ}) consisting of complexes with Hⁱ(𝔄[•]) ∈ Mod_{ub}(𝔄_{X,Λ}, 𝔅), Hⁱ(𝔄[•]) = 0 (|i| >> 0)

Definition

An equivalence class of bounded trivialization is called a bornology of $\mathscr{A}_{X,\Lambda}.$

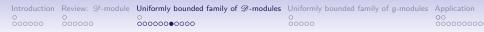
Definition

Let \mathcal{B} be a bornology of $\mathscr{A}_{X,\Lambda}$ and fix $(\mathcal{U}, \Phi) \in \mathcal{B}$ such that \mathcal{U} is an affine open covering. For $\mathcal{M} \in \prod_{\lambda} \operatorname{Mod}_{h}(\mathscr{A}_{X,\lambda})$,

 \mathcal{M} is uniformly bounded w.r.t. $\mathcal{B} \stackrel{\text{def}}{\iff}$

 $m_{\iota}(\mathcal{M}_{\lambda}|_{U})$ is bounded on Λ ($\forall U \in \mathcal{U}$, closed embedding $\iota \colon U \hookrightarrow \mathbb{C}^{n}$).

- Mod_{ub}(𝔄_{X,Λ}, 𝔅): full subcategory of Π_λ Mod_h(𝔄_{X,λ}) consisting of uniformly bounded families
- D^b_{ub}(𝔄_{X,Λ}, 𝔅): full subcategory of ∏_λ D^b_h(𝔄_{X,λ}) consisting of complexes with Hⁱ(𝔄[•]) ∈ Mod_{ub}(𝔄_{X,Λ}, 𝔅), Hⁱ(𝔄[•]) = 0 (|i| >> 0)



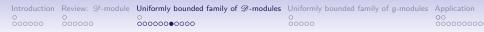
Definition

Let $f: Y \to X$ be a morphism between smooth varieties and \mathcal{B} a bornology of $\mathscr{A}_{X,\Lambda}$. Fix $(\mathcal{U}, \Phi) \in \mathcal{B}$ and set

 $f^{\#}\mathcal{B} := (\text{equivalence class of } (f^{-1}\mathcal{U}, f^{\#}\Phi)).$

 $f^{\#}\mathcal{B}$ does not depend on the choice of (\mathcal{U}, Φ) .

Similarly, corresponding to the operations of $\mathscr{A}_{X,\Lambda}$ (product #, exterior tensor \boxtimes , $(\cdot)^{\mathcal{L}}$ twisted by an invertible sheaf \mathcal{L} , opposite $(\cdot)^{\text{op}}$ of algebras), one can define operations of bornology.



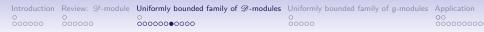
Definition

Let $f: Y \to X$ be a morphism between smooth varieties and \mathcal{B} a bornology of $\mathscr{A}_{X,\Lambda}$. Fix $(\mathcal{U}, \Phi) \in \mathcal{B}$ and set

 $f^{\#}\mathcal{B} := (\text{equivalence class of } (f^{-1}\mathcal{U}, f^{\#}\Phi)).$

 $f^{\#}\mathcal{B}$ does not depend on the choice of (\mathcal{U}, Φ) .

Similarly, corresponding to the operations of $\mathscr{A}_{X,\Lambda}$ (product #, exterior tensor \boxtimes , $(\cdot)^{\mathcal{L}}$ twisted by an invertible sheaf \mathcal{L} , opposite $(\cdot)^{\text{op}}$ of algebras), one can define operations of bornology.



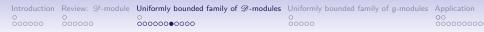
Definition

Let $f: Y \to X$ be a morphism between smooth varieties and \mathcal{B} a bornology of $\mathscr{A}_{X,\Lambda}$. Fix $(\mathcal{U}, \Phi) \in \mathcal{B}$ and set

```
f^{\#}\mathcal{B} := (\text{equivalence class of } (f^{-1}\mathcal{U}, f^{\#}\Phi)).
```

$f^{\#}\mathcal{B}$ does not depend on the choice of (\mathcal{U}, Φ) .

Similarly, corresponding to the operations of $\mathscr{A}_{X,\Lambda}$ (product #, exterior tensor \boxtimes , $(\cdot)^{\mathcal{L}}$ twisted by an invertible sheaf \mathcal{L} , opposite $(\cdot)^{\text{op}}$ of algebras), one can define operations of bornology.



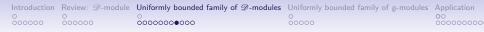
Definition

Let $f: Y \to X$ be a morphism between smooth varieties and \mathcal{B} a bornology of $\mathscr{A}_{X,\Lambda}$. Fix $(\mathcal{U}, \Phi) \in \mathcal{B}$ and set

```
f^{\#}\mathcal{B} := (\text{equivalence class of } (f^{-1}\mathcal{U}, f^{\#}\Phi)).
```

 $f^{\#}\mathcal{B}$ does not depend on the choice of (\mathcal{U}, Φ) .

Similarly, corresponding to the operations of $\mathscr{A}_{X,\Lambda}$ (product #, exterior tensor \boxtimes , $(\cdot)^{\mathcal{L}}$ twisted by an invertible sheaf \mathcal{L} , opposite $(\cdot)^{\mathrm{op}}$ of algebras), one can define operations of bornology.



- X, Y: smooth varieties
- $\mathscr{A}_{X,\Lambda}$, $\mathscr{A}_{Y,\Lambda}$: families of TDOs on X and Y
- $\mathcal{B}_X, \mathcal{B}_Y$: bornologies of $\mathscr{A}_{X,\Lambda}$ and $\mathscr{A}_{Y,\Lambda}$, respectively

Theorem (K-)

- 1. $\mathcal{M} \in \operatorname{Mod}_{ub}(\mathscr{A}_{X,\Lambda},\mathcal{B}) \Rightarrow \operatorname{Len}_{\mathscr{A}_{X,\lambda}}(\mathcal{M}_{\lambda})$ is bounded on $\lambda \in \Lambda$.
- 2. For $0 \to \mathcal{L} \to \mathcal{M} \to \mathcal{N} \to 0$ (exact) in $\prod_{\lambda} \operatorname{Mod}_h(\mathscr{A}_{X,\lambda})$,

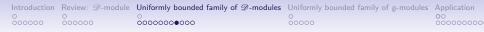
 $\mathcal{L}, \mathcal{N} \in \mathrm{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \Leftrightarrow \mathcal{M} \in \mathrm{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}).$

3. Let $f: Y \to X$ be a morphism of varieties. Then Df_+ and Lf^* preserve the uniform boundedness:

 $Df_{+}: D^{b}_{ub}(f^{\#}\mathscr{A}_{X,\Lambda}, f^{\#}\mathcal{B}) \to D^{b}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}),$ $Lf^{*}: D^{b}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \to D^{b}_{ub}(f^{\#}\mathscr{A}_{X,\Lambda}, f^{\#}\mathcal{B}).$

4. For $\mathcal{M}^{\bullet} \in D^{b}_{ub}(\mathscr{A}_{X,\Lambda} \boxtimes \mathscr{A}^{\mathrm{op}}_{Y,\Lambda}, \mathcal{B}_{X} \boxtimes \mathcal{B}^{\mathrm{op}}_{Y})$ and $\mathcal{N}^{\bullet} \in D^{b}_{ub}(\mathscr{A}_{Y,\Lambda}, \mathcal{B}_{Y})$, we have

 $(Rq_*(\mathcal{M}^{ullet}_{\lambda}\otimes^L_{p^{-1}\mathscr{A}_{Y,\lambda}}p^{-1}\mathcal{N}^{ullet}_{\lambda}))_{\lambda\in\Lambda}\in D^b_{ub}(\mathscr{A}_{X,\Lambda},\mathcal{B}_X).$



- X, Y: smooth varieties
- $\mathscr{A}_{X,\Lambda}$, $\mathscr{A}_{Y,\Lambda}$: families of TDOs on X and Y
- $\mathcal{B}_X, \mathcal{B}_Y$: bornologies of $\mathscr{A}_{X,\Lambda}$ and $\mathscr{A}_{Y,\Lambda}$, respectively

Theorem (K-)

- 1. $\mathcal{M} \in \operatorname{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \Rightarrow \operatorname{Len}_{\mathscr{A}_{X,\lambda}}(\mathcal{M}_{\lambda})$ is bounded on $\lambda \in \Lambda$.
- 2. For $0 \to \mathcal{L} \to \mathcal{M} \to \mathcal{N} \to 0$ (exact) in $\prod_{\lambda} \operatorname{Mod}_h(\mathscr{A}_{X,\lambda})$,

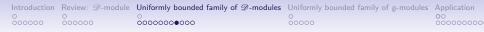
 $\mathcal{L}, \mathcal{N} \in \mathrm{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \Leftrightarrow \mathcal{M} \in \mathrm{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}).$

3. Let $f: Y \to X$ be a morphism of varieties. Then Df_+ and Lf^* preserve the uniform boundedness:

 $Df_{+}: D^{b}_{ub}(f^{\#}\mathscr{A}_{X,\Lambda}, f^{\#}\mathcal{B}) \to D^{b}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}),$ $Lf^{*}: D^{b}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \to D^{b}_{ub}(f^{\#}\mathscr{A}_{X,\Lambda}, f^{\#}\mathcal{B}).$

4. For $\mathcal{M}^{\bullet} \in D^{b}_{ub}(\mathscr{A}_{X,\Lambda} \boxtimes \mathscr{A}^{\mathrm{op}}_{Y,\Lambda}, \mathcal{B}_{X} \boxtimes \mathcal{B}^{\mathrm{op}}_{Y})$ and $\mathcal{N}^{\bullet} \in D^{b}_{ub}(\mathscr{A}_{Y,\Lambda}, \mathcal{B}_{Y})$, we have

 $(Rq_*(\mathcal{M}^{ullet}_{\lambda}\otimes^L_{p^{-1}\mathscr{A}_{Y,\lambda}}p^{-1}\mathcal{N}^{ullet}_{\lambda}))_{\lambda\in\Lambda}\in D^b_{ub}(\mathscr{A}_{X,\Lambda},\mathcal{B}_X).$



- X, Y: smooth varieties
- $\mathscr{A}_{X,\Lambda}$, $\mathscr{A}_{Y,\Lambda}$: families of TDOs on X and Y
- $\mathcal{B}_X, \mathcal{B}_Y$: bornologies of $\mathscr{A}_{X,\Lambda}$ and $\mathscr{A}_{Y,\Lambda}$, respectively

Theorem (K-)

- 1. $\mathcal{M} \in \operatorname{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \Rightarrow \operatorname{Len}_{\mathscr{A}_{X,\lambda}}(\mathcal{M}_{\lambda})$ is bounded on $\lambda \in \Lambda$.
- 2. For $0 \to \mathcal{L} \to \mathcal{M} \to \mathcal{N} \to 0$ (exact) in $\prod_{\lambda} \operatorname{Mod}_h(\mathscr{A}_{X,\lambda})$,

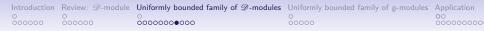
 $\mathcal{L}, \mathcal{N} \in \mathrm{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \Leftrightarrow \mathcal{M} \in \mathrm{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}).$

3. Let $f: Y \to X$ be a morphism of varieties. Then Df_+ and Lf^* preserve the uniform boundedness:

 $Df_{+}: D^{b}_{ub}(f^{\#}\mathscr{A}_{X,\Lambda}, f^{\#}\mathcal{B}) \to D^{b}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}),$ $Lf^{*}: D^{b}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \to D^{b}_{ub}(f^{\#}\mathscr{A}_{X,\Lambda}, f^{\#}\mathcal{B}).$

4. For $\mathcal{M}^{\bullet} \in D^{b}_{ub}(\mathscr{A}_{X,\Lambda} \boxtimes \mathscr{A}^{\mathrm{op}}_{Y,\Lambda}, \mathcal{B}_{X} \boxtimes \mathcal{B}^{\mathrm{op}}_{Y})$ and $\mathcal{N}^{\bullet} \in D^{b}_{ub}(\mathscr{A}_{Y,\Lambda}, \mathcal{B}_{Y})$, we have

 $(Rq_*(\mathcal{M}^{ullet}_{\lambda}\otimes^L_{p^{-1}\mathscr{A}_{Y,\lambda}}p^{-1}\mathcal{N}^{ullet}_{\lambda}))_{\lambda\in\Lambda}\in D^b_{ub}(\mathscr{A}_{X,\Lambda},\mathcal{B}_X).$



- X, Y: smooth varieties
- $\mathscr{A}_{X,\Lambda}$, $\mathscr{A}_{Y,\Lambda}$: families of TDOs on X and Y
- $\mathcal{B}_X, \mathcal{B}_Y$: bornologies of $\mathscr{A}_{X,\Lambda}$ and $\mathscr{A}_{Y,\Lambda}$, respectively

Theorem (K-)

- 1. $\mathcal{M} \in \operatorname{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \Rightarrow \operatorname{Len}_{\mathscr{A}_{X,\lambda}}(\mathcal{M}_{\lambda})$ is bounded on $\lambda \in \Lambda$.
- 2. For $0 \to \mathcal{L} \to \mathcal{M} \to \mathcal{N} \to 0$ (exact) in $\prod_{\lambda} \operatorname{Mod}_h(\mathscr{A}_{X,\lambda})$,

$$\mathcal{L}, \mathcal{N} \in \mathrm{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \Leftrightarrow \mathcal{M} \in \mathrm{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}).$$

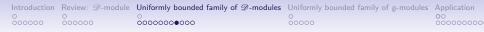
3. Let $f: Y \to X$ be a morphism of varieties. Then Df_+ and Lf^* preserve the uniform boundedness:

$$Df_{+}: D^{b}_{ub}(f^{\#}\mathscr{A}_{X,\Lambda}, f^{\#}\mathcal{B}) \to D^{b}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}),$$

$$Lf^{*}: D^{b}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \to D^{b}_{ub}(f^{\#}\mathscr{A}_{X,\Lambda}, f^{\#}\mathcal{B}).$$

4. For $\mathcal{M}^{\bullet} \in D^{b}_{ub}(\mathscr{A}_{X,\Lambda} \boxtimes \mathscr{A}^{\mathrm{op}}_{Y,\Lambda}, \mathcal{B}_{X} \boxtimes \mathcal{B}^{\mathrm{op}}_{Y})$ and $\mathcal{N}^{\bullet} \in D^{b}_{ub}(\mathscr{A}_{Y,\Lambda}, \mathcal{B}_{Y})$, we have

 $(Rq_*(\mathcal{M}^{ullet}_{\lambda}\otimes^L_{p^{-1}\mathscr{A}_{Y,\lambda}}p^{-1}\mathcal{N}^{ullet}_{\lambda}))_{\lambda\in\Lambda}\in D^b_{ub}(\mathscr{A}_{X,\Lambda},\mathcal{B}_X).$



- X, Y: smooth varieties
- $\mathscr{A}_{X,\Lambda}$, $\mathscr{A}_{Y,\Lambda}$: families of TDOs on X and Y
- $\mathcal{B}_X, \mathcal{B}_Y$: bornologies of $\mathscr{A}_{X,\Lambda}$ and $\mathscr{A}_{Y,\Lambda}$, respectively

Theorem (K-)

- 1. $\mathcal{M} \in \operatorname{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \Rightarrow \operatorname{Len}_{\mathscr{A}_{X,\lambda}}(\mathcal{M}_{\lambda})$ is bounded on $\lambda \in \Lambda$.
- 2. For $0 \to \mathcal{L} \to \mathcal{M} \to \mathcal{N} \to 0$ (exact) in $\prod_{\lambda} \operatorname{Mod}_h(\mathscr{A}_{X,\lambda})$,

$$\mathcal{L}, \mathcal{N} \in \mathrm{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \Leftrightarrow \mathcal{M} \in \mathrm{Mod}_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}).$$

3. Let $f: Y \to X$ be a morphism of varieties. Then Df_+ and Lf^* preserve the uniform boundedness:

$$\begin{aligned} Df_+ &: D^b_{ub}(f^\# \mathscr{A}_{X,\Lambda}, f^\# \mathcal{B}) \to D^b_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}), \\ Lf^* &: D^b_{ub}(\mathscr{A}_{X,\Lambda}, \mathcal{B}) \to D^b_{ub}(f^\# \mathscr{A}_{X,\Lambda}, f^\# \mathcal{B}). \end{aligned}$$

4. For
$$\mathcal{M}^{\bullet} \in D^{b}_{ub}(\mathscr{A}_{X,\Lambda} \boxtimes \mathscr{A}^{\mathrm{op}}_{Y,\Lambda}, \mathcal{B}_{X} \boxtimes \mathcal{B}^{\mathrm{op}}_{Y})$$
 and $\mathcal{N}^{\bullet} \in D^{b}_{ub}(\mathscr{A}_{Y,\Lambda}, \mathcal{B}_{Y})$, we have

$$(\mathit{Rq}_*(\mathcal{M}^{ullet}_{\lambda}\otimes^L_{p^{-1}\mathscr{A}_{Y,\lambda}}p^{-1}\mathcal{N}^{ullet}_{\lambda}))_{\lambda\in\Lambda}\in D^b_{ub}(\mathscr{A}_{X,\Lambda},\mathcal{B}_X).$$

Introduction	Review: <i>D</i> -module	Uniformly bounded family of \mathscr{D} -modules	Uniformly bounded family of g-modules	Application
0	0	0	0	00
000000	000000	00000000000	00000	000000000

G-equivariant bornology

- G: affine algebraic group
- X: smooth G-variety

A TDO \mathscr{A}_X on X is said to be G-equivariant if

- 1. a homomorphism $\mathcal{U}(\mathfrak{g}) o \mathscr{A}_X$ and
- 2. an isomorphism $\pi^{\#}\mathscr{A}_{X} \simeq m^{\#}\mathscr{A}_{X}$ (+ associative law etc.) are given,

where $X \xleftarrow[\text{projection}]{\pi} G \times X \xrightarrow[multiplication]{m} X$.

Definition

Let $\mathscr{A}_{X,\Lambda}$ be a family of *G*-equivariant TDOs on *X*. A bornology \mathcal{B} is said to be *G*-equivariant if

$$\pi^{\#}\mathcal{B} = m^{\#}\mathcal{B}$$

under $\pi^{\#}\mathscr{A}_{X,\Lambda} \simeq m^{\#}\mathscr{A}_{X,\Lambda}$.

Introduction	Review: <i>D</i> -module	Uniformly bounded family of \mathscr{D} -modules	Uniformly bounded family of g-modules	Application
0	0	0	0	00
000000	000000	00000000000	00000	000000000

G-equivariant bornology

- G: affine algebraic group
- X: smooth G-variety

A TDO \mathscr{A}_X on X is said to be G-equivariant if

- 1. a homomorphism $\mathcal{U}(\mathfrak{g})
 ightarrow \mathscr{A}_X$ and
- 2. an isomorphism $\pi^{\#}\mathscr{A}_{X}\simeq m^{\#}\mathscr{A}_{X}$ (+ associative law etc.) are given,

where $X \xleftarrow[\text{projection}]{\pi} G \times X \xrightarrow[multiplication]{m} X$.

Definition

Let $\mathscr{A}_{X,\Lambda}$ be a family of *G*-equivariant TDOs on *X*. A bornology \mathcal{B} is said to be *G*-equivariant if

$$\pi^{\#}\mathcal{B} = m^{\#}\mathcal{B}$$

under $\pi^{\#}\mathscr{A}_{X,\Lambda} \simeq m^{\#}\mathscr{A}_{X,\Lambda}$.

Introduction	Review: <i>D</i> -module	Uniformly bounded family of \mathscr{D} -modules	Uniformly bounded family of g-modules	Application
0	0	0	0	00
000000	000000	00000000000	00000	000000000

G-equivariant bornology

- G: affine algebraic group
- X: smooth G-variety

A TDO \mathscr{A}_X on X is said to be G-equivariant if

- 1. a homomorphism $\mathcal{U}(\mathfrak{g}) o \mathscr{A}_X$ and
- 2. an isomorphism $\pi^{\#}\mathscr{A}_{X} \simeq m^{\#}\mathscr{A}_{X}$ (+ associative law etc.) are given,

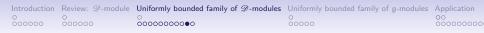
where $X \xleftarrow[\text{projection}]{\pi} G \times X \xrightarrow[multiplication]{m} X$.

Definition

Let $\mathscr{A}_{X,\Lambda}$ be a family of *G*-equivariant TDOs on *X*. A bornology \mathcal{B} is said to be *G*-equivariant if

$$\pi^{\#}\mathcal{B}=m^{\#}\mathcal{B}$$

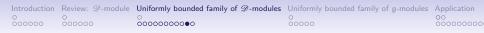
under $\pi^{\#}\mathscr{A}_{X,\Lambda} \simeq m^{\#}\mathscr{A}_{X,\Lambda}$.



Theorem

If X is a homogeneous G-variety G/H, there is a unique G-equivariant bornology of $\mathscr{A}_{X,\Lambda}$.

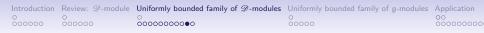
- If X = G, any G-equivariant TDO is canonically isomorphic to \mathscr{D}_G .
- Then there is a unique *G*-equivariant bornology on *G*.
- A bornology on G/H is determined by its pull-back by the quotient map $G \rightarrow G/H$.



Theorem

If X is a homogeneous G-variety G/H, there is a unique G-equivariant bornology of $\mathscr{A}_{X,\Lambda}$.

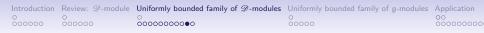
- If X = G, any G-equivariant TDO is canonically isomorphic to \mathscr{D}_G .
- Then there is a unique G-equivariant bornology on G.
- A bornology on G/H is determined by its pull-back by the quotient map $G \rightarrow G/H$.



Theorem

If X is a homogeneous G-variety G/H, there is a unique G-equivariant bornology of $\mathscr{A}_{X,\Lambda}$.

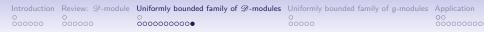
- If X = G, any G-equivariant TDO is canonically isomorphic to \mathscr{D}_G .
- Then there is a unique *G*-equivariant bornology on *G*.
- A bornology on G/H is determined by its pull-back by the quotient map $G \rightarrow G/H$.



Theorem

If X is a homogeneous G-variety G/H, there is a unique G-equivariant bornology of $\mathscr{A}_{X,\Lambda}$.

- If X = G, any G-equivariant TDO is canonically isomorphic to \mathscr{D}_G .
- Then there is a unique *G*-equivariant bornology on *G*.
- A bornology on G/H is determined by its pull-back by the quotient map $G \rightarrow G/H$.



G-equivariant *D*-module

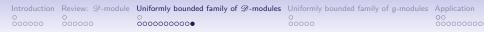
• Assume $|G \setminus X| < \infty$. (X is not necessarily homogeneous.)

By Beilinson–Bernstein's classification of equivariant \mathscr{D} -modules ('81), any irreducible *G*-equivariant $\mathscr{A}_{X,\lambda}$ -module can be obtained by taking direct images, cohomologies and subquotients.

$$G \to G/G_x \hookrightarrow X$$

Theorem

Let \mathcal{B} be a *G*-equivariant bornology of $\mathscr{A}_{X,\Lambda}$. Any family of *G*-equivariant $\mathscr{A}_{X,\lambda}$ -modules with bounded lengths is uniformly bounded.



G-equivariant *D*-module

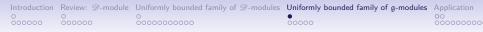
• Assume $|G \setminus X| < \infty$. (X is not necessarily homogeneous.)

By Beilinson–Bernstein's classification of equivariant \mathcal{D} -modules ('81), any irreducible *G*-equivariant $\mathscr{A}_{X,\lambda}$ -module can be obtained by taking direct images, cohomologies and subquotients.

$$G \to G/G_x \hookrightarrow X$$

Theorem

Let \mathcal{B} be a *G*-equivariant bornology of $\mathscr{A}_{X,\Lambda}$. Any family of *G*-equivariant $\mathscr{A}_{X,\lambda}$ -modules with bounded lengths is uniformly bounded.



Outline

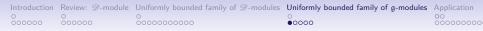
Introduction

Review: *D*-module

Uniformly bounded family of *D*-modules

Uniformly bounded family of \mathfrak{g} -modules

Application



- G: connected reductive algebraic group
- B = TU: Borel subgroup of G
- $\mathscr{D}_{G/B,\lambda} := (p_*(\mathscr{D}_{G/U})/p_*(\mathscr{D}_{G/U})\operatorname{Ker}(-\lambda))^{\mathcal{T}} (\lambda \in \mathfrak{t}^*)$
- I_{λ} : minimal primitive ideal of $\mathcal{U}(\mathfrak{g})$ with infinitesimal character $\lambda \rho$

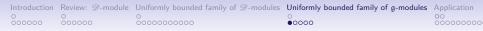
Then we have $\mathcal{U}(\mathfrak{g})/I_{\lambda} \xrightarrow{\simeq} \mathsf{\Gamma}(\mathscr{D}_{G/B,\lambda}).$

Fact (Beilinson-Bernstein '81)

If $\lambda - \rho$ is regular anti-dominant,

 $\Gamma \colon \operatorname{Mod}_{qc}(\mathscr{D}_{G/B,\lambda}) \to \operatorname{Mod}(\mathcal{U}(\mathfrak{g})/I_{\lambda})$

gives an equivalence of categories. If $\lambda - \rho$ is anti-dominant and not regular, this is true for some full subcategory of $\operatorname{Mod}_{qc}(\mathscr{D}_{G/B,\lambda})$.



- G: connected reductive algebraic group
- B = TU: Borel subgroup of G
- $\mathscr{D}_{G/B,\lambda} := (p_*(\mathscr{D}_{G/U})/p_*(\mathscr{D}_{G/U})\operatorname{Ker}(-\lambda))^{\mathcal{T}} \ (\lambda \in \mathfrak{t}^*)$
- I_{λ} : minimal primitive ideal of $\mathcal{U}(\mathfrak{g})$ with infinitesimal character $\lambda \rho$

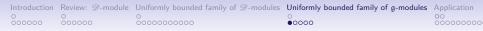
Then we have $\mathcal{U}(\mathfrak{g})/I_{\lambda} \xrightarrow{\simeq} \Gamma(\mathscr{D}_{G/B,\lambda}).$

Fact (Beilinson-Bernstein '81)

If $\lambda - \rho$ is regular anti-dominant,

 $\Gamma \colon \operatorname{Mod}_{qc}(\mathscr{D}_{G/B,\lambda}) \to \operatorname{Mod}(\mathcal{U}(\mathfrak{g})/I_{\lambda})$

gives an equivalence of categories. If $\lambda - \rho$ is anti-dominant and not regular, this is true for some full subcategory of $\operatorname{Mod}_{qc}(\mathscr{D}_{G/B,\lambda})$.



- G: connected reductive algebraic group
- B = TU: Borel subgroup of G
- $\mathscr{D}_{G/B,\lambda} := (p_*(\mathscr{D}_{G/U})/p_*(\mathscr{D}_{G/U})\operatorname{Ker}(-\lambda))^{\mathcal{T}} (\lambda \in \mathfrak{t}^*)$
- I_{λ} : minimal primitive ideal of $\mathcal{U}(\mathfrak{g})$ with infinitesimal character $\lambda \rho$

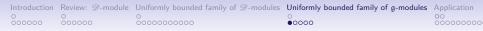
Then we have $\mathcal{U}(\mathfrak{g})/I_{\lambda} \xrightarrow{\simeq} \Gamma(\mathscr{D}_{G/B,\lambda}).$

Fact (Beilinson-Bernstein '81)

If $\lambda - \rho$ is regular anti-dominant,

 $\mathsf{\Gamma}\colon \operatorname{Mod}_{qc}(\mathscr{D}_{\mathsf{G}/\mathsf{B},\lambda})\to \operatorname{Mod}(\mathcal{U}(\mathfrak{g})/I_{\lambda})$

gives an equivalence of categories. If $\lambda - \rho$ is anti-dominant and not regular, this is true for some full subcategory of $\operatorname{Mod}_{qc}(\mathscr{D}_{G/B,\lambda})$.



- G: connected reductive algebraic group
- B = TU: Borel subgroup of G
- $\mathscr{D}_{G/B,\lambda} := (p_*(\mathscr{D}_{G/U})/p_*(\mathscr{D}_{G/U})\operatorname{Ker}(-\lambda))^{\mathcal{T}} (\lambda \in \mathfrak{t}^*)$
- I_{λ} : minimal primitive ideal of $\mathcal{U}(\mathfrak{g})$ with infinitesimal character $\lambda \rho$

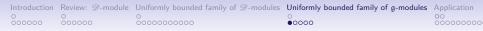
Then we have $\mathcal{U}(\mathfrak{g})/I_{\lambda} \xrightarrow{\simeq} \Gamma(\mathscr{D}_{G/B,\lambda}).$

Fact (Beilinson-Bernstein '81)

If $\lambda - \rho$ is regular anti-dominant,

 $\mathsf{\Gamma}\colon \operatorname{Mod}_{qc}(\mathscr{D}_{G/B,\lambda})\to \operatorname{Mod}(\mathcal{U}(\mathfrak{g})/I_{\lambda})$

gives an equivalence of categories. If $\lambda - \rho$ is anti-dominant and not regular, this is true for some full subcategory of $\operatorname{Mod}_{qc}(\mathscr{D}_{G/B,\lambda})$.



Beilinson-Bernstein correspondence

- G: connected reductive algebraic group
- B = TU: Borel subgroup of G
- $\mathscr{D}_{G/B,\lambda} := (p_*(\mathscr{D}_{G/U})/p_*(\mathscr{D}_{G/U})\operatorname{Ker}(-\lambda))^{\mathcal{T}} \ (\lambda \in \mathfrak{t}^*)$
- I_{λ} : minimal primitive ideal of $\mathcal{U}(\mathfrak{g})$ with infinitesimal character $\lambda \rho$

Then we have $\mathcal{U}(\mathfrak{g})/I_{\lambda} \xrightarrow{\simeq} \Gamma(\mathscr{D}_{G/B,\lambda}).$

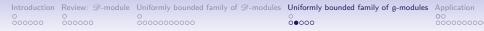
Fact (Beilinson-Bernstein '81)

If $\lambda - \rho$ is regular anti-dominant,

 $\Gamma \colon \operatorname{Mod}_{qc}(\mathscr{D}_{G/B,\lambda}) \to \operatorname{Mod}(\mathcal{U}(\mathfrak{g})/I_{\lambda})$

gives an equivalence of categories. If $\lambda - \rho$ is anti-dominant and not regular, this is true for some full subcategory of $\operatorname{Mod}_{qc}(\mathscr{D}_{G/B,\lambda})$.

Hereafter any twist λ is assumed to satisfy the anti-dominant condition.



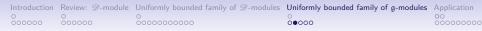
Definition

We say that a family $(V_i)_{i \in I}$ of g-modules is uniformly bounded if

- 1. $\sup_i \operatorname{Len}_{\mathfrak{g}}(V_i) < \infty$
- the family of all composition factors of all V_i is isomorphic to (Γ(M_j))_{j∈J} for some uniformly bounded family (M_j)_{j∈J} of twisted D-modules on G/B.

A family of (g, K)-modules is said to be uniformly bounded if it is uniformly bounded as a family of g-modules.

Then the uniform boundedness satisfies the properties stated in the introduction.



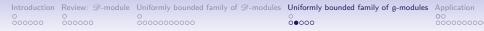
Definition

We say that a family $(V_i)_{i \in I}$ of g-modules is uniformly bounded if

- 1. $\sup_i \operatorname{Len}_\mathfrak{g}(V_i) < \infty$
- the family of all composition factors of all V_i is isomorphic to (Γ(M_j))_{j∈J} for some uniformly bounded family (M_j)_{j∈J} of twisted D-modules on G/B.

A family of (g, K)-modules is said to be uniformly bounded if it is uniformly bounded as a family of g-modules.

Then the uniform boundedness satisfies the properties stated in the introduction.



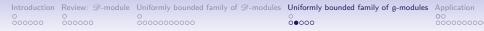
Definition

We say that a family $(V_i)_{i \in I}$ of g-modules is uniformly bounded if

- 1. $\sup_i \operatorname{Len}_\mathfrak{g}(V_i) < \infty$
- the family of all composition factors of all V_i is isomorphic to (Γ(M_j))_{j∈J} for some uniformly bounded family (M_j)_{j∈J} of twisted D-modules on G/B.

A family of (g, K)-modules is said to be uniformly bounded if it is uniformly bounded as a family of g-modules.

Then the uniform boundedness satisfies the properties stated in the introduction.



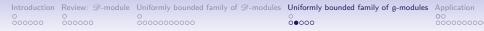
Definition

We say that a family $(V_i)_{i \in I}$ of g-modules is uniformly bounded if

- 1. $\sup_i \operatorname{Len}_\mathfrak{g}(V_i) < \infty$
- the family of all composition factors of all V_i is isomorphic to (Γ(M_j))_{j∈J} for some uniformly bounded family (M_j)_{j∈J} of twisted D-modules on G/B.

A family of $(\mathfrak{g}, \mathcal{K})$ -modules is said to be uniformly bounded if it is uniformly bounded as a family of \mathfrak{g} -modules.

Then the uniform boundedness satisfies the properties stated in the introduction.



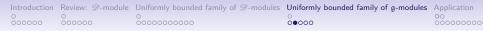
Definition

We say that a family $(V_i)_{i \in I}$ of g-modules is uniformly bounded if

- 1. $\sup_i \operatorname{Len}_\mathfrak{g}(V_i) < \infty$
- the family of all composition factors of all V_i is isomorphic to (Γ(M_j))_{j∈J} for some uniformly bounded family (M_j)_{j∈J} of twisted D-modules on G/B.

A family of $(\mathfrak{g}, \mathcal{K})$ -modules is said to be uniformly bounded if it is uniformly bounded as a family of \mathfrak{g} -modules.

Then the uniform boundedness satisfies the properties stated in the introduction.



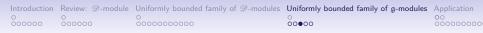
Definition

We say that a family $(V_i)_{i \in I}$ of g-modules is uniformly bounded if

- 1. $\sup_i \operatorname{Len}_\mathfrak{g}(V_i) < \infty$
- the family of all composition factors of all V_i is isomorphic to (Γ(M_j))_{j∈J} for some uniformly bounded family (M_j)_{j∈J} of twisted D-modules on G/B.

A family of $(\mathfrak{g}, \mathcal{K})$ -modules is said to be uniformly bounded if it is uniformly bounded as a family of \mathfrak{g} -modules.

Then the uniform boundedness satisfies the properties stated in the introduction.



Family of (\mathfrak{g}, K) -modules

• K: a closed subgroup G

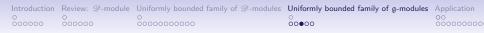
Theorem (K-)

Assume that $|K \setminus G/B| < \infty$. Then any family of (\mathfrak{g}, K) -modules with bounded lengths is uniformly bounded. In particular, a family of irreducible (\mathfrak{g}, K) -modules is uniformly bounded.

e.g. Harish-Chandra module, object in the BGG category ${\cal O}$

Proof.

This theorem follows from the similar result of K-equivariant \mathscr{D} -modules.



Family of (\mathfrak{g}, K) -modules

• K: a closed subgroup G

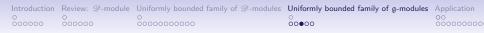
Theorem (K-)

Assume that $|K \setminus G/B| < \infty$. Then any family of (\mathfrak{g}, K) -modules with bounded lengths is uniformly bounded. In particular, a family of irreducible (\mathfrak{g}, K) -modules is uniformly bounded.

e.g. Harish-Chandra module, object in the BGG category ${\cal O}$

Proof.

This theorem follows from the similar result of K-equivariant \mathscr{D} -modules.



Family of (\mathfrak{g}, K) -modules

• K: a closed subgroup G

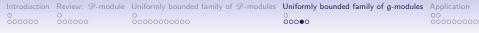
Theorem (K-)

Assume that $|K \setminus G/B| < \infty$. Then any family of (\mathfrak{g}, K) -modules with bounded lengths is uniformly bounded. In particular, a family of irreducible (\mathfrak{g}, K) -modules is uniformly bounded.

e.g. Harish-Chandra module, object in the BGG category ${\cal O}$

Proof.

This theorem follows from the similar result of K-equivariant \mathscr{D} -modules.



 $\mathcal{U}(\mathfrak{g})^{G'}$ -module

- G': connected reductive subgroup of G
- K': (finite covering of) reductive subgroup of G'

Theorem

Let $(V_i)_{i \in I}$ (resp. $(V'_i)_{i \in I}$) be a uniformly bounded family of (\mathfrak{g}, K') -modules (resp. (\mathfrak{g}', K') -modules). Then $\exists C > 0$ s.t. $\forall i \in I, j \in \mathbb{N}$

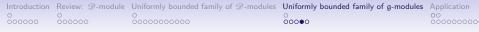
 $\operatorname{Len}_{\mathcal{U}(\mathfrak{g})^{G'}}(H_j(\mathfrak{g}',K';V_i\otimes V_i'))\leq C$

Remark

 $H_0(\mathfrak{g}', \mathcal{K}'; V_i \otimes V_i')^* \simeq \operatorname{Hom}_{\mathfrak{g}', \mathcal{K}'}(V_i, (V_i')_{\mathcal{K}'}^*)$

Proof.

- 1. $(\mathbb{D}^{n-j}\Gamma^{\Delta(G')}_{\Delta(K')}(V_i\otimes V'_i))_{i\in I}\in \mathrm{Mod}_{ub}(\mathfrak{g}\oplus \mathfrak{g}',\Delta(G'))$
- 2. $H_j(\mathfrak{g}', K'; V_i \otimes V'_i) \simeq \mathbb{D}^{n-j} \Gamma^{\Delta(G')}_{\Delta(K')}(V_i \otimes V'_i)^{\Delta(G')}$
- 3. $(\cdot)^{\Delta(G')}$: $\operatorname{Mod}(\mathfrak{g} \oplus \mathfrak{g}', \Delta(G')) \to \operatorname{Mod}(\mathcal{U}(\mathfrak{g})^{G'})$ is exact and sends irreducible objects to irreducible objects or zero.



$\mathcal{U}(\mathfrak{g})^{G'}$ -module

- G': connected reductive subgroup of G
- K': (finite covering of) reductive subgroup of G'

Theorem

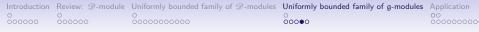
Let $(V_i)_{i \in I}$ (resp. $(V'_i)_{i \in I}$) be a uniformly bounded family of (\mathfrak{g}, K') -modules (resp. (\mathfrak{g}', K') -modules). Then $\exists C > 0$ s.t. $\forall i \in I, j \in \mathbb{N}$

$$\operatorname{Len}_{\mathcal{U}(\mathfrak{g})^{G'}}(H_j(\mathfrak{g}',K';V_i\otimes V'_i))\leq C$$

Remark $H_0(\mathfrak{g}', K'; V_i \otimes V'_i)^* \simeq \operatorname{Hom}_{\mathfrak{g}', K'}(V_i, (V'_i)^*_{K'})$

Proof.

- 1. $(\mathbb{D}^{n-j}\Gamma^{\Delta(G')}_{\Delta(K')}(V_i\otimes V'_i))_{i\in I}\in \mathrm{Mod}_{ub}(\mathfrak{g}\oplus \mathfrak{g}',\Delta(G'))$
- 2. $H_j(\mathfrak{g}', K'; V_i \otimes V'_i) \simeq \mathbb{D}^{n-j} \Gamma^{\Delta(G')}_{\Delta(K')}(V_i \otimes V'_i)^{\Delta(G')}$
- 3. $(\cdot)^{\Delta(G')}$: $\operatorname{Mod}(\mathfrak{g} \oplus \mathfrak{g}', \Delta(G')) \to \operatorname{Mod}(\mathcal{U}(\mathfrak{g})^{G'})$ is exact and sends irreducible objects to irreducible objects or zero.



$\mathcal{U}(\mathfrak{g})^{G'}$ -module

- G': connected reductive subgroup of G
- K': (finite covering of) reductive subgroup of G'

Theorem

Let $(V_i)_{i \in I}$ (resp. $(V'_i)_{i \in I}$) be a uniformly bounded family of (\mathfrak{g}, K') -modules (resp. (\mathfrak{g}', K') -modules). Then $\exists C > 0$ s.t. $\forall i \in I, j \in \mathbb{N}$

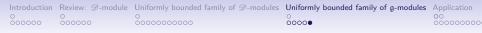
$$\operatorname{Len}_{\mathcal{U}(\mathfrak{g})^{G'}}(H_j(\mathfrak{g}',K';V_i\otimes V_i'))\leq C$$

Remark

 $H_0(\mathfrak{g}', \mathcal{K}'; V_i \otimes V_i')^* \simeq \operatorname{Hom}_{\mathfrak{g}', \mathcal{K}'}(V_i, (V_i')_{\mathcal{K}'}^*)$

Proof.

- 1. $(\mathbb{D}^{n-j}\Gamma^{\Delta(G')}_{\Delta(K')}(V_i\otimes V'_i))_{i\in I}\in \mathrm{Mod}_{ub}(\mathfrak{g}\oplus \mathfrak{g}',\Delta(G'))$
- 2. $H_j(\mathfrak{g}', \mathcal{K}'; \mathcal{V}_i \otimes \mathcal{V}'_i) \simeq \mathbb{D}^{n-j} \Gamma^{\Delta(G')}_{\Delta(\mathcal{K}')}(\mathcal{V}_i \otimes \mathcal{V}'_i)^{\Delta(G')}$
- 3. $(\cdot)^{\Delta(G')} \colon \operatorname{Mod}(\mathfrak{g} \oplus \mathfrak{g}', \Delta(G')) \to \operatorname{Mod}(\mathcal{U}(\mathfrak{g})^{G'})$ is exact and sends irreducible objects to irreducible objects or zero.



Example

- $G = \operatorname{Sp}(n, \mathbb{C})$
- V =(Harish-Chandra module of Segal–Shale–Weil rep.)
- $((\mathfrak{g}', \mathcal{K}'), (\mathfrak{g}'', \mathcal{K}''))$: reductive dual pair

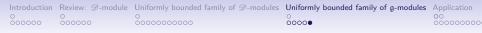
For an irreducible (\mathfrak{g}', K') -module V', set

 $\Theta_i(V') := H_i(\mathfrak{g}', K'; V \otimes (V')_{K'}^*) \quad ((\mathfrak{g}'', K'')\text{-module}).$

Then $\exists C > 0$ (independent of V') s.t.

 $\operatorname{Len}_{\mathfrak{g}'',K''}(\Theta_i(V')) \leq C.$

R. Howe ('89) has proved that $\Theta_0(V')$ has finite length and has a unique irreducible quotient. (We can not prove the later from uniformly bounded family.) Cohomological theta lift in the *p*-adic case is studied by Adams–Prasad–Savin ('17).



Example

- $G = \operatorname{Sp}(n, \mathbb{C})$
- V =(Harish-Chandra module of Segal-Shale-Weil rep.)
- $((\mathfrak{g}', K'), (\mathfrak{g}'', K''))$: reductive dual pair

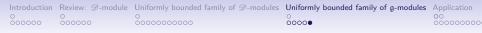
For an irreducible $(\mathfrak{g}', \mathcal{K}')$ -module \mathcal{V}' , set

 $\Theta_i(V') := H_i(\mathfrak{g}', K'; V \otimes (V')^*_{K'}) \quad ((\mathfrak{g}'', K'')\text{-module}).$

Then $\exists C > 0$ (independent of V') s.t.

 $\operatorname{Len}_{\mathfrak{g}'',K''}(\Theta_i(V')) \leq C.$

R. Howe ('89) has proved that $\Theta_0(V')$ has finite length and has a unique irreducible quotient. (We can not prove the later from uniformly bounded family.) Cohomological theta lift in the *p*-adic case is studied by Adams–Prasad–Savin ('17).



Example

- $G = \operatorname{Sp}(n, \mathbb{C})$
- V =(Harish-Chandra module of Segal-Shale-Weil rep.)
- $((\mathfrak{g}', K'), (\mathfrak{g}'', K''))$: reductive dual pair

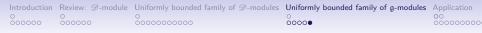
For an irreducible $(\mathfrak{g}', \mathcal{K}')$ -module \mathcal{V}' , set

 $\Theta_i(V') := H_i(\mathfrak{g}', K'; V \otimes (V')^*_{K'}) \quad ((\mathfrak{g}'', K'')\text{-module}).$

Then $\exists C > 0$ (independent of V') s.t.

$\operatorname{Len}_{\mathfrak{g}'',\mathcal{K}''}(\Theta_i(V')) \leq C.$

R. Howe ('89) has proved that $\Theta_0(V')$ has finite length and has a unique irreducible quotient. (We can not prove the later from uniformly bounded family.) Cohomological theta lift in the *p*-adic case is studied by Adams–Prasad–Savin ('17).



Example

- $G = \operatorname{Sp}(n, \mathbb{C})$
- V =(Harish-Chandra module of Segal–Shale–Weil rep.)
- $((\mathfrak{g}', \mathcal{K}'), (\mathfrak{g}'', \mathcal{K}''))$: reductive dual pair

For an irreducible $(\mathfrak{g}', \mathcal{K}')$ -module \mathcal{V}' , set

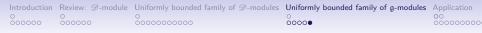
 $\Theta_i(V') := H_i(\mathfrak{g}', K'; V \otimes (V')^*_{K'}) \quad ((\mathfrak{g}'', K'')\text{-module}).$

Then $\exists C > 0$ (independent of V') s.t.

$$\operatorname{Len}_{\mathfrak{g}'',K''}(\Theta_i(V')) \leq C.$$

R. Howe ('89) has proved that $\Theta_0(V')$ has finite length and has a unique irreducible quotient. (We can not prove the later from uniformly bounded family.)

Cohomological theta lift in the *p*-adic case is studied by Adams–Prasad–Savin ('17).



Example

- $G = \operatorname{Sp}(n, \mathbb{C})$
- V =(Harish-Chandra module of Segal–Shale–Weil rep.)
- $((\mathfrak{g}', K'), (\mathfrak{g}'', K''))$: reductive dual pair

For an irreducible $(\mathfrak{g}', \mathcal{K}')$ -module \mathcal{V}' , set

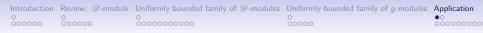
$$\Theta_i(V') := H_i(\mathfrak{g}', \mathcal{K}'; V \otimes (V')^*_{\mathcal{K}'}) \quad ((\mathfrak{g}'', \mathcal{K}'')\text{-module}).$$

Then $\exists C > 0$ (independent of V') s.t.

$$\operatorname{Len}_{\mathfrak{g}'',K''}(\Theta_i(V')) \leq C.$$

R. Howe ('89) has proved that $\Theta_0(V')$ has finite length and has a unique irreducible quotient. (We can not prove the later from uniformly bounded family.) Cohomological theta lift in the *p*-adic case is studied by

Adams–Prasad–Savin ('17).



Outline

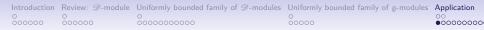
Introduction

Review: *D*-module

Uniformly bounded family of *D*-modules

Uniformly bounded family of g-modules

Application



• $G'_{\mathbb{R}} \subset G_{\mathbb{R}}$: Lie group and its closed subgroup

Consider when

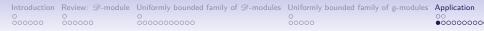
$$\dim(\operatorname{Hom}_{G'_{\mathbb{R}}}(V|_{G'_{\mathbb{R}}},V')) < \infty,$$

$$\sup_{V,V'}\dim(\operatorname{Hom}_{G'_{\mathbb{R}}}(V|_{G'_{\mathbb{R}}},V')) < \infty,$$

where V and V' belong to some classes of (irreducible) representations of $G_{\mathbb{R}}$ and $G'_{\mathbb{R}}$, respectively.

Example

- finite-dimensional representations
- principal series representations on a partial flag variety
- holomorphic discrete series representations
- cohomologically induced representations



• $G'_{\mathbb{R}} \subset G_{\mathbb{R}}$: Lie group and its closed subgroup

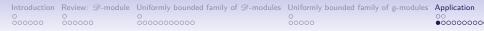
Consider when

$$\begin{split} &\dim(\operatorname{Hom}_{G'_{\mathbb{R}}}(V|_{G'_{\mathbb{R}}},V'))<\infty,\\ &\sup_{V,V'}\dim(\operatorname{Hom}_{G'_{\mathbb{R}}}(V|_{G'_{\mathbb{R}}},V'))<\infty, \end{split}$$

where V and V' belong to some classes of (irreducible) representations of $G_{\mathbb{R}}$ and $G'_{\mathbb{R}}$, respectively.

Example

- finite-dimensional representations
- principal series representations on a partial flag variety
- holomorphic discrete series representations
- cohomologically induced representations



• $G'_{\mathbb{R}} \subset G_{\mathbb{R}}$: Lie group and its closed subgroup

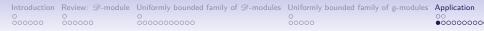
Consider when

$$\begin{split} &\dim(\operatorname{Hom}_{G'_{\mathbb{R}}}(V|_{G'_{\mathbb{R}}},V'))<\infty,\\ &\sup_{V,V'}\dim(\operatorname{Hom}_{G'_{\mathbb{R}}}(V|_{G'_{\mathbb{R}}},V'))<\infty, \end{split}$$

where V and V' belong to some classes of (irreducible) representations of $G_{\mathbb{R}}$ and $G'_{\mathbb{R}}$, respectively.

Example

- finite-dimensional representations
- principal series representations on a partial flag variety
- holomorphic discrete series representations
- cohomologically induced representations



• $G'_{\mathbb{R}} \subset G_{\mathbb{R}}$: Lie group and its closed subgroup

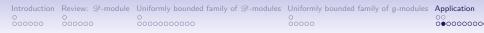
Consider when

$$\begin{split} &\dim(\operatorname{Hom}_{G'_{\mathbb{R}}}(V|_{G'_{\mathbb{R}}},V'))<\infty,\\ &\sup_{V,V'}\dim(\operatorname{Hom}_{G'_{\mathbb{R}}}(V|_{G'_{\mathbb{R}}},V'))<\infty, \end{split}$$

where V and V' belong to some classes of (irreducible) representations of $G_{\mathbb{R}}$ and $G'_{\mathbb{R}}$, respectively.

Example

- finite-dimensional representations
- principal series representations on a partial flag variety
- holomorphic discrete series representations
- cohomologically induced representations



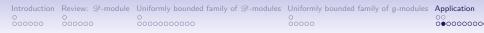
Multiplicity-free

- T. Kobayashi '97-, visible action (for unitary representations)
- Aizenbud–Gourevitch '09, Sun–Zhu '12 (multiplicity one theorem) Gelfand–Kazhdan criterion (and variations)

Real (or open) orbit

- Kobayashi–Oshima '13 (finite multiplicity theorem) $|G'_{\mathbb{R}} \setminus G_{\mathbb{R}} / P_{\mathbb{R}}| < \infty$
- H. Yamashita '94 |G'_ℝ\G_ℝ/P_ℝ| < ∞ (or AV(V_K) ∩ Ad(g)(g')[⊥] = {0} ∃g ∈ G_ℝ)
- Krötz–Schlichtkrull '14

V is any, V' is finite-dimensional (e.g. $\operatorname{Hom}_{G'_{\mathbb{D}}}(V, \mathbb{C})$).



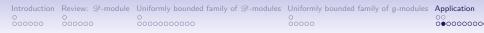
Multiplicity-free

- T. Kobayashi '97-, visible action (for unitary representations)
- Aizenbud–Gourevitch '09, Sun–Zhu '12 (multiplicity one theorem) Gelfand–Kazhdan criterion (and variations)

Real (or open) orbit

- Kobayashi–Oshima '13 (finite multiplicity theorem) $|G'_{\mathbb{R}} \setminus G_{\mathbb{R}} / P_{\mathbb{R}}| < \infty$
- H. Yamashita '94 $|G'_{\mathbb{R}} \setminus G_{\mathbb{R}} / P_{\mathbb{R}}| < \infty$ (or $\mathcal{AV}(V_{\mathcal{K}}) \cap \operatorname{Ad}(g)(g')^{\perp} = \{0\} \exists g \in G_{\mathbb{R}})$
- Krötz–Schlichtkrull '14

V is any, V' is finite-dimensional (e.g. $\operatorname{Hom}_{G'_{\mathbb{D}}}(V, \mathbb{C})$).



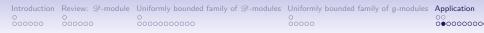
Multiplicity-free

- T. Kobayashi '97-, visible action (for unitary representations)
- Aizenbud–Gourevitch '09, Sun–Zhu '12 (multiplicity one theorem) Gelfand–Kazhdan criterion (and variations)

Real (or open) orbit

- Kobayashi–Oshima '13 (finite multiplicity theorem) $|G'_{\mathbb{R}} \setminus G_{\mathbb{R}} / P_{\mathbb{R}}| < \infty$
- H. Yamashita '94 $|G'_{\mathbb{R}} \setminus G_{\mathbb{R}} / P_{\mathbb{R}}| < \infty$ (or $\mathcal{AV}(V_{\mathcal{K}}) \cap \operatorname{Ad}(g)(g')^{\perp} = \{0\} \exists g \in G_{\mathbb{R}})$
- Krötz–Schlichtkrull '14

V is any, V' is finite-dimensional (e.g. $\operatorname{Hom}_{G'_{\mathbb{D}}}(V, \mathbb{C})$).



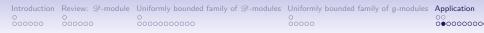
Multiplicity-free

- T. Kobayashi '97-, visible action (for unitary representations)
- Aizenbud–Gourevitch '09, Sun–Zhu '12 (multiplicity one theorem) Gelfand–Kazhdan criterion (and variations)

Real (or open) orbit

- Kobayashi–Oshima '13 (finite multiplicity theorem) $|G'_{\mathbb{R}} \setminus G_{\mathbb{R}} / P_{\mathbb{R}}| < \infty$
- H. Yamashita '94 $|G'_{\mathbb{R}} \setminus G_{\mathbb{R}}/P_{\mathbb{R}}| < \infty$ (or $\mathcal{AV}(V_{\mathcal{K}}) \cap \operatorname{Ad}(g)(g')^{\perp} = \{0\} \exists g \in G_{\mathbb{R}})$
- Krötz–Schlichtkrull '14

V is any, V' is finite-dimensional (e.g. $\operatorname{Hom}_{G'_{\mathbb{D}}}(V, \mathbb{C})$).



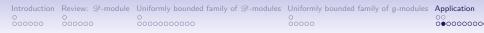
Multiplicity-free

- T. Kobayashi '97-, visible action (for unitary representations)
- Aizenbud–Gourevitch '09, Sun–Zhu '12 (multiplicity one theorem) Gelfand–Kazhdan criterion (and variations)

Real (or open) orbit

- Kobayashi–Oshima '13 (finite multiplicity theorem) $|G'_{\mathbb{R}} \setminus G_{\mathbb{R}} / P_{\mathbb{R}}| < \infty$
- H. Yamashita '94 $|G'_{\mathbb{R}} \setminus G_{\mathbb{R}} / P_{\mathbb{R}}| < \infty$ (or $\mathcal{AV}(V_{\mathcal{K}}) \cap \operatorname{Ad}(g)(g')^{\perp} = \{0\} \exists g \in G_{\mathbb{R}})$
- Krötz–Schlichtkrull '14

V is any, V' is finite-dimensional (e.g. $\operatorname{Hom}_{G'_{\mathbb{D}}}(V, \mathbb{C})$).



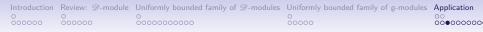
Multiplicity-free

- T. Kobayashi '97-, visible action (for unitary representations)
- Aizenbud–Gourevitch '09, Sun–Zhu '12 (multiplicity one theorem) Gelfand–Kazhdan criterion (and variations)

Real (or open) orbit

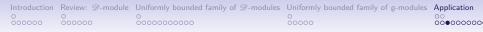
- Kobayashi–Oshima '13 (finite multiplicity theorem) $|G'_{\mathbb{R}} \setminus G_{\mathbb{R}} / P_{\mathbb{R}}| < \infty$
- H. Yamashita '94 $|G'_{\mathbb{R}} \setminus G_{\mathbb{R}}/P_{\mathbb{R}}| < \infty$ (or $\mathcal{AV}(V_{\mathcal{K}}) \cap \operatorname{Ad}(g)(g')^{\perp} = \{0\} \exists g \in G_{\mathbb{R}})$
- Krötz–Schlichtkrull '14

V is any, V' is finite-dimensional (e.g. $\operatorname{Hom}_{G'_{\mathbb{D}}}(V, \mathbb{C})$).



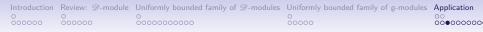
G and G' are some complexification of $G_{\mathbb{R}}$ and $G'_{\mathbb{R}}$, respectively.

- Kobayashi–Oshima '13 (uniformly bounded theorem) $|G' \backslash G/B| < \infty$
- Aizenbud–Gourevitch–Minchenko '16 $|G' \setminus G/Q| < \infty$
- T. Tauchi '21 $|G' \setminus G/Q| < \infty$
- Aizenbud–Gourevitch (arXiv:2109.00204) $\dim(\mathcal{O} \cap (\mathfrak{g}')^{\perp}) \leq \dim(\mathcal{O})/2 \; (\forall \; G\text{-orbit} \; \mathcal{O} \subset \mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)))$
- T. Kobayashi '21 $|G' \setminus G/R| < \infty$
- Wen-Wei Li (arXiv:2207.08994) $|G' \setminus G/B| < \infty$, cohomological multiplicity
- B: Borel subgroup of G
- $Q_{\mathbb{R}}, Q$: parabolic subgroup of $G_{\mathbb{R}}$ and its complexification
- $R \subset Q$: parabolic subgroup of G
- $\mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$: subvariety of \mathfrak{g}^* determined by $\operatorname{gr}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$



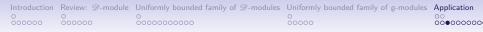
G and G' are some complexification of $G_{\mathbb{R}}$ and $G'_{\mathbb{R}}$, respectively.

- Kobayashi–Oshima '13 (uniformly bounded theorem) $|G' \backslash G/B| < \infty$
- Aizenbud–Gourevitch–Minchenko '16 $|G' \setminus G/Q| < \infty$
- T. Tauchi '21 $|G' \setminus G/Q| < \infty$
- Aizenbud–Gourevitch (arXiv:2109.00204) $\dim(\mathcal{O} \cap (\mathfrak{g}')^{\perp}) \leq \dim(\mathcal{O})/2 \; (\forall \; G\text{-orbit} \; \mathcal{O} \subset \mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)))$
- T. Kobayashi '21 $|G' \setminus G/R| < \infty$
- Wen-Wei Li (arXiv:2207.08994) $|G' \setminus G/B| < \infty$, cohomological multiplicity
- B: Borel subgroup of G
- $\mathcal{Q}_{\mathbb{R}}, \mathcal{Q}$: parabolic subgroup of $\mathcal{G}_{\mathbb{R}}$ and its complexification
- $R \subset Q$: parabolic subgroup of G
- $\mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$: subvariety of \mathfrak{g}^* determined by $\operatorname{gr}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$



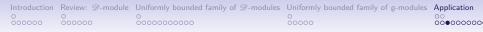
G and G' are some complexification of $G_{\mathbb{R}}$ and $G'_{\mathbb{R}}$, respectively.

- Kobayashi–Oshima '13 (uniformly bounded theorem) $|G' \backslash G/B| < \infty$
- Aizenbud–Gourevitch–Minchenko '16 $|G' \setminus G/Q| < \infty$
- T. Tauchi '21 $|G' \setminus G/Q| < \infty$
- Aizenbud–Gourevitch (arXiv:2109.00204) $\dim(\mathcal{O} \cap (\mathfrak{g}')^{\perp}) \leq \dim(\mathcal{O})/2 \; (\forall \; G\text{-orbit} \; \mathcal{O} \subset \mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)))$
- T. Kobayashi '21 $|G' \setminus G/R| < \infty$
- Wen-Wei Li (arXiv:2207.08994) $|G' \setminus G/B| < \infty$, cohomological multiplicity
- B: Borel subgroup of G
- $\mathcal{Q}_{\mathbb{R}}, \mathcal{Q}$: parabolic subgroup of $\mathcal{G}_{\mathbb{R}}$ and its complexification
- $R \subset Q$: parabolic subgroup of G
- $\mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$: subvariety of \mathfrak{g}^* determined by $\operatorname{gr}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$



G and G' are some complexification of $G_{\mathbb{R}}$ and $G'_{\mathbb{R}}$, respectively.

- Kobayashi–Oshima '13 (uniformly bounded theorem) $|G' \backslash G/B| < \infty$
- Aizenbud–Gourevitch–Minchenko '16 $|G' ackslash G/Q| < \infty$
- T. Tauchi '21 $|G' \setminus G/Q| < \infty$
- Aizenbud–Gourevitch (arXiv:2109.00204) $\dim(\mathcal{O} \cap (\mathfrak{g}')^{\perp}) \leq \dim(\mathcal{O})/2 \; (\forall \; G\text{-orbit} \; \mathcal{O} \subset \mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)))$
- T. Kobayashi '21 $|G' \setminus G/R| < \infty$
- Wen-Wei Li (arXiv:2207.08994) $|G' \setminus G/B| < \infty$, cohomological multiplicity
- B: Borel subgroup of G
- $Q_{\mathbb{R}}, Q$: parabolic subgroup of $G_{\mathbb{R}}$ and its complexification
- $R \subset Q$: parabolic subgroup of G
- $\mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$: subvariety of \mathfrak{g}^* determined by $\operatorname{gr}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$



G and G' are some complexification of $G_{\mathbb{R}}$ and $G'_{\mathbb{R}}$, respectively.

Complex (finite) orbit, holonomicity of \mathscr{D} -modules

- Kobayashi–Oshima '13 (uniformly bounded theorem) $|G' \setminus G/B| < \infty$
- Aizenbud–Gourevitch–Minchenko '16 $|G' \setminus G/Q| < \infty$
- T. Tauchi '21 $|G' \setminus G/Q| < \infty$
- Aizenbud–Gourevitch (arXiv:2109.00204) $\dim(\mathcal{O} \cap (\mathfrak{g}')^{\perp}) \leq \dim(\mathcal{O})/2 \; (\forall \; G\text{-orbit} \; \mathcal{O} \subset \mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)))$

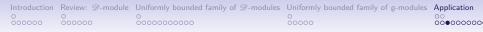
• T. Kobayashi '21 $|G' \setminus G/R| < \infty$

- Wen-Wei Li (arXiv:2207.08994) $|G' \setminus G/B| < \infty$, cohomological multiplicity
- B: Borel subgroup of G
- $Q_{\mathbb{R}}, Q$: parabolic subgroup of $G_{\mathbb{R}}$ and its complexification
- $R \subset Q$: parabolic subgroup of G
- $\mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$: subvariety of \mathfrak{g}^* determined by $\operatorname{gr}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$



G and G' are some complexification of $G_{\mathbb{R}}$ and $G'_{\mathbb{R}}$, respectively.

- Kobayashi–Oshima '13 (uniformly bounded theorem) $|G' \setminus G/B| < \infty$
- Aizenbud–Gourevitch–Minchenko '16 $|G' \setminus G/Q| < \infty$
- T. Tauchi '21 $|G' \setminus G/Q| < \infty$
- Aizenbud–Gourevitch (arXiv:2109.00204) $\dim(\mathcal{O} \cap (\mathfrak{g}')^{\perp}) \leq \dim(\mathcal{O})/2 \; (\forall \; G\text{-orbit} \; \mathcal{O} \subset \mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)))$
- T. Kobayashi '21 $|G' \setminus G/R| < \infty$
- Wen-Wei Li (arXiv:2207.08994) $|G' \setminus G/B| < \infty$, cohomological multiplicity
- B: Borel subgroup of G
- $Q_{\mathbb{R}}, Q$: parabolic subgroup of $G_{\mathbb{R}}$ and its complexification
- $R \subset Q$: parabolic subgroup of G
- $\mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$: subvariety of \mathfrak{g}^* determined by $\operatorname{gr}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$



G and G' are some complexification of $G_{\mathbb{R}}$ and $G'_{\mathbb{R}}$, respectively.

- Kobayashi–Oshima '13 (uniformly bounded theorem) $|G' \setminus G/B| < \infty$
- Aizenbud–Gourevitch–Minchenko '16 $|G' \setminus G/Q| < \infty$
- T. Tauchi '21 $|G' \setminus G/Q| < \infty$
- Aizenbud–Gourevitch (arXiv:2109.00204) $\dim(\mathcal{O} \cap (\mathfrak{g}')^{\perp}) \leq \dim(\mathcal{O})/2 \; (\forall \; G\text{-orbit} \; \mathcal{O} \subset \mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)))$
- T. Kobayashi '21 $|G' \setminus G/R| < \infty$
- Wen-Wei Li (arXiv:2207.08994) $|G' \setminus G/B| < \infty$, cohomological multiplicity
- B: Borel subgroup of G
- $Q_{\mathbb{R}}, Q$: parabolic subgroup of $G_{\mathbb{R}}$ and its complexification
- $R \subset Q$: parabolic subgroup of G
- $\mathcal{V}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$: subvariety of \mathfrak{g}^* determined by $\operatorname{gr}(\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V))$

Uniformly bounded family

Complex (finite) orbit, holonomicity of D-modules

- Kobayashi–Oshima '13
- Aizenbud–Gourevitch–Minchenko '16
- T. Tauchi '21
- Aizenbud–Gourevitch (arXiv:2109.00204)
- T. Kobayashi '21
- Wen-Wei Li (arXiv:2207.08994)

Using uniformly bounded family, we can treat uniformly the results about uniformly bounded multiplicity theorems.

Remark

The methods in the papers and ours are different, so it does not mean that all results in the papers are generalized.

Hereafter, we concentrate on more concrete setting.

Uniformly bounded family

Complex (finite) orbit, holonomicity of D-modules

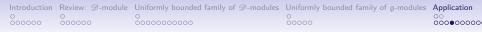
- Kobayashi–Oshima '13
- Aizenbud-Gourevitch-Minchenko '16
- T. Tauchi '21
- Aizenbud–Gourevitch (arXiv:2109.00204)
- T. Kobayashi '21
- Wen-Wei Li (arXiv:2207.08994)

Using uniformly bounded family, we can treat uniformly the results about uniformly bounded multiplicity theorems.

Remark

The methods in the papers and ours are different, so it does not mean that all results in the papers are generalized.

Hereafter, we concentrate on more concrete setting.



Uniformly bounded family

Complex (finite) orbit, holonomicity of D-modules

- Kobayashi–Oshima '13
- Aizenbud–Gourevitch–Minchenko '16
- T. Tauchi '21
- Aizenbud–Gourevitch (arXiv:2109.00204)
- T. Kobayashi '21
- Wen-Wei Li (arXiv:2207.08994)

Using uniformly bounded family, we can treat uniformly the results about uniformly bounded multiplicity theorems.

Remark

The methods in the papers and ours are different, so it does not mean that all results in the papers are generalized.

Hereafter, we concentrate on more concrete setting.

Consider the branching problem of real reductive Lie groups.

- G: (connected) reductive algebraic group / $\mathbb C$
- $G' \subset G$: reductive subgroup
- $G'_{\mathbb{R}} \subset G_{\mathbb{R}}$: real forms of G' and G
- $K'_{\mathbb{R}} \subset K_{\mathbb{R}}$: maximal compact subgroups of $G'_{\mathbb{R}}$ and $G_{\mathbb{R}}$
- $K' \subset K$: the complexifications of $K'_{\mathbb{R}}$ and $K_{\mathbb{R}}$

(modulo connected components and covering)

Question

Let V be an irreducible (g, K)-module. When does the restriction $V|_{g',K'}$ have uniformly bounded multiplicities:

$$\sup_{V'} \dim(\operatorname{Hom}_{\mathfrak{g}', \mathcal{K}'}(V|_{\mathfrak{g}', \mathcal{K}'}, V')) < \infty$$
$$(V' : \text{ irreducible } (\mathfrak{g}', \mathcal{K}') \text{-module})$$

Consider the branching problem of real reductive Lie groups.

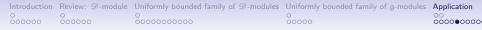
- G: (connected) reductive algebraic group / $\mathbb C$
- $G' \subset G$: reductive subgroup
- $G'_{\mathbb{R}} \subset G_{\mathbb{R}}$: real forms of G' and G
- $K'_{\mathbb{R}} \subset K_{\mathbb{R}}$: maximal compact subgroups of $G'_{\mathbb{R}}$ and $G_{\mathbb{R}}$
- $K' \subset K$: the complexifications of $K'_{\mathbb{R}}$ and $K_{\mathbb{R}}$

(modulo connected components and covering)

Question

Let V be an irreducible (g, K)-module. When does the restriction $V|_{g',K'}$ have uniformly bounded multiplicities:

$$\sup_{V'} \dim(\operatorname{Hom}_{\mathfrak{g}',K'}(V|_{\mathfrak{g}',K'},V')) < \infty$$
$$(V' : \text{ irreducible } (\mathfrak{g}',K')\text{-module})$$



Consider the branching problem of real reductive Lie groups.

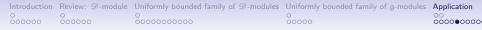
- G: (connected) reductive algebraic group / $\mathbb C$
- $G' \subset G$: reductive subgroup
- $G'_{\mathbb{R}} \subset G_{\mathbb{R}}$: real forms of G' and G
- $K'_{\mathbb{R}} \subset K_{\mathbb{R}}$: maximal compact subgroups of $G'_{\mathbb{R}}$ and $G_{\mathbb{R}}$
- $K' \subset K$: the complexifications of $K'_{\mathbb{R}}$ and $K_{\mathbb{R}}$

(modulo connected components and covering)

Question

Let V be an irreducible (g, K)-module. When does the restriction $V|_{g',K'}$ have uniformly bounded multiplicities:

 $\sup_{V'} \dim(\operatorname{Hom}_{\mathfrak{g}',K'}(V|_{\mathfrak{g}',K'},V')) < \infty$ $(V' : \text{ irreducible } (\mathfrak{g}',K')\text{-module})$



Consider the branching problem of real reductive Lie groups.

- G: (connected) reductive algebraic group / $\mathbb C$
- $G' \subset G$: reductive subgroup
- $G'_{\mathbb{R}} \subset G_{\mathbb{R}}$: real forms of G' and G
- ${\cal K}'_{\mathbb R}\subset {\cal K}_{\mathbb R}$: maximal compact subgroups of ${\cal G}'_{\mathbb R}$ and ${\cal G}_{\mathbb R}$
- $K' \subset K$: the complexifications of $K'_{\mathbb{R}}$ and $K_{\mathbb{R}}$

(modulo connected components and covering)

Question

Let V be an irreducible (g, K)-module. When does the restriction $V|_{g',K'}$ have uniformly bounded multiplicities:

 $\sup_{V'} \dim(\operatorname{Hom}_{\mathfrak{g}',K'}(V|_{\mathfrak{g}',K'},V')) < \infty$ $(V' : \text{ irreducible } (\mathfrak{g}',K')\text{-module})$

Consider the branching problem of real reductive Lie groups.

- G: (connected) reductive algebraic group / $\mathbb C$
- $G' \subset G$: reductive subgroup
- $G'_{\mathbb{R}} \subset G_{\mathbb{R}}$: real forms of G' and G
- ${\cal K}'_{\mathbb R}\subset {\cal K}_{\mathbb R}$: maximal compact subgroups of ${\cal G}'_{\mathbb R}$ and ${\cal G}_{\mathbb R}$
- ${\cal K}' \subset {\cal K}$: the complexifications of ${\cal K}'_{\mathbb R}$ and ${\cal K}_{\mathbb R}$

(modulo connected components and covering)

Question

Let V be an irreducible (g, K)-module. When does the restriction $V|_{g',K'}$ have uniformly bounded multiplicities:

$$\sup_{V'} \dim(\operatorname{Hom}_{\mathfrak{g}',K'}(V|_{\mathfrak{g}',K'},V')) < \infty$$
$$(V' : \text{ irreducible } (\mathfrak{g}',K')\text{-module})$$

Consider the branching problem of real reductive Lie groups.

- G: (connected) reductive algebraic group / $\mathbb C$
- $G' \subset G$: reductive subgroup
- $G'_{\mathbb{R}} \subset G_{\mathbb{R}}$: real forms of G' and G
- ${\cal K}'_{\mathbb R}\subset {\cal K}_{\mathbb R}$: maximal compact subgroups of ${\cal G}'_{\mathbb R}$ and ${\cal G}_{\mathbb R}$
- ${\cal K}' \subset {\cal K}$: the complexifications of ${\cal K}'_{\mathbb R}$ and ${\cal K}_{\mathbb R}$

(modulo connected components and covering)

Question

Let V be an irreducible (\mathfrak{g}, K) -module. When does the restriction $V|_{\mathfrak{g}', K'}$ have uniformly bounded multiplicities:

$$\begin{split} \sup_{V'} \mathsf{dim}(\mathrm{Hom}_{\mathfrak{g}',\mathcal{K}'}(V|_{\mathfrak{g}',\mathcal{K}'},V')) < \infty \\ (V' : \mathsf{irreducible} \ (\mathfrak{g}',\mathcal{K}')\mathsf{-module}) \end{split}$$

Consider the branching problem of real reductive Lie groups.

- G: (connected) reductive algebraic group / $\mathbb C$
- $G' \subset G$: reductive subgroup
- $G'_{\mathbb{R}} \subset G_{\mathbb{R}}$: real forms of G' and G
- ${\cal K}'_{\mathbb R}\subset {\cal K}_{\mathbb R}$: maximal compact subgroups of ${\cal G}'_{\mathbb R}$ and ${\cal G}_{\mathbb R}$
- ${\cal K}' \subset {\cal K}$: the complexifications of ${\cal K}'_{\mathbb R}$ and ${\cal K}_{\mathbb R}$

(modulo connected components and covering)

Question

Let V be an irreducible (\mathfrak{g}, K) -module. When does the restriction $V|_{\mathfrak{g}', K'}$ have uniformly bounded multiplicities:

$$\begin{split} \sup_{V'} \mathsf{dim}(\mathrm{Hom}_{\mathfrak{g}',\mathcal{K}'}(V|_{\mathfrak{g}',\mathcal{K}'},V')) < \infty \\ (V': \mathsf{irreducible} \ (\mathfrak{g}',\mathcal{K}')\mathsf{-module}) \end{split}$$

Theorem (K-)

Let V be an irreducible (\mathfrak{g}, K) -module. Set $I := \operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)$. Then the following conditions on V are equivalent:

- 1. $V|_{\mathfrak{g}',K'}$ has uniformly bounded multiplicities
- 2. $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) < \infty$
- 3. $(S(\mathfrak{g})/\sqrt{\operatorname{gr}(I)})^{G'}$ is Poisson-commutative
- 4. the action of G' on $\mathcal{V}(\operatorname{gr}(I))(\subset \mathfrak{g}^*)$ is coisotropic
- 5. $(\mathcal{U}(\mathfrak{g})/I)^{G'}$ is finitely generated as a $\mathcal{Z}(\mathfrak{g}')$ -module.

The same is true for smooth or unitary representations.

3 \Leftrightarrow 4 \Rightarrow 5 follows from the study of Hamiltonian Poisson *G*-varieties by I. Losev ('09).

To show $1 \Leftrightarrow 2$, we need the action

$$(\mathcal{U}(\mathfrak{g})/I)^{G'} \curvearrowright (V \otimes_{\mathcal{U}(\mathfrak{g}')} V')^{K'} = H_0(\mathfrak{g}', K'; V \otimes V')$$
$$(V': \text{ irreducible } (\mathfrak{g}', K') \text{-module}).$$

Theorem (K-)

Let V be an irreducible (\mathfrak{g}, K) -module. Set $I := \operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)$. Then the following conditions on V are equivalent:

- 1. $V|_{\mathfrak{g}',K'}$ has uniformly bounded multiplicities
- 2. $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) < \infty$
- 3. $(S(\mathfrak{g})/\sqrt{\operatorname{gr}(l)})^{G'}$ is Poisson-commutative
- 4. the action of G' on $\mathcal{V}(\operatorname{gr}(I))(\subset \mathfrak{g}^*)$ is coisotropic
- 5. $(\mathcal{U}(\mathfrak{g})/I)^{G'}$ is finitely generated as a $\mathcal{Z}(\mathfrak{g}')$ -module.

The same is true for smooth or unitary representations.

3 \Leftrightarrow 4 \Rightarrow 5 follows from the study of Hamiltonian Poisson *G*-varieties by I. Losev ('09).

To show $1 \Leftrightarrow 2$, we need the action

$$\begin{aligned} (\mathcal{U}(\mathfrak{g})/I)^{G'} &\curvearrowright (V \otimes_{\mathcal{U}(\mathfrak{g}')} V')^{K'} = H_0(\mathfrak{g}', K'; V \otimes V') \\ (V': \text{ irreducible } (\mathfrak{g}', K') \text{-module}). \end{aligned}$$

Theorem (K-)

Let V be an irreducible (\mathfrak{g}, K) -module. Set $I := \operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)$. Then the following conditions on V are equivalent:

- 1. $V|_{\mathfrak{g}',K'}$ has uniformly bounded multiplicities
- 2. $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) < \infty$
- 3. $(S(\mathfrak{g})/\sqrt{\operatorname{gr}(l)})^{G'}$ is Poisson-commutative
- 4. the action of G' on $\mathcal{V}(\operatorname{gr}(I))(\subset \mathfrak{g}^*)$ is coisotropic
- 5. $(\mathcal{U}(\mathfrak{g})/I)^{G'}$ is finitely generated as a $\mathcal{Z}(\mathfrak{g}')$ -module.

The same is true for smooth or unitary representations.

3 \Leftrightarrow 4 \Rightarrow 5 follows from the study of Hamiltonian Poisson *G*-varieties by I. Losev ('09).

To show $1 \Leftrightarrow 2$, we need the action

$$\begin{aligned} (\mathcal{U}(\mathfrak{g})/I)^{G'} &\curvearrowright (V \otimes_{\mathcal{U}(\mathfrak{g}')} V')^{K'} = H_0(\mathfrak{g}', K'; V \otimes V') \\ (V': \text{ irreducible } (\mathfrak{g}', K') \text{-module}). \end{aligned}$$

Theorem (K-)

Let V be an irreducible (\mathfrak{g}, K) -module. Set $I := \operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)$. Then the following conditions on V are equivalent:

- 1. $V|_{\mathfrak{g}',K'}$ has uniformly bounded multiplicities
- 2. $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) < \infty$
- 3. $(S(\mathfrak{g})/\sqrt{\operatorname{gr}(I)})^{G'}$ is Poisson-commutative
- 4. the action of G' on $\mathcal{V}(\operatorname{gr}(I))(\subset \mathfrak{g}^*)$ is coisotropic
- 5. $(\mathcal{U}(\mathfrak{g})/I)^{G'}$ is finitely generated as a $\mathcal{Z}(\mathfrak{g}')$ -module.

The same is true for smooth or unitary representations.

3 \Leftrightarrow 4 \Rightarrow 5 follows from the study of Hamiltonian Poisson *G*-varieties by I. Losev ('09).

To show $1 \Leftrightarrow 2$, we need the action

$$\begin{aligned} (\mathcal{U}(\mathfrak{g})/I)^{G'} &\curvearrowright (V \otimes_{\mathcal{U}(\mathfrak{g}')} V')^{K'} = H_0(\mathfrak{g}', K'; V \otimes V') \\ (V': \text{ irreducible } (\mathfrak{g}', K') \text{-module}). \end{aligned}$$

Theorem (K-)

Let V be an irreducible (\mathfrak{g}, K) -module. Set $I := \operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)$. Then the following conditions on V are equivalent:

- 1. $V|_{\mathfrak{g}',K'}$ has uniformly bounded multiplicities
- 2. $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) < \infty$
- 3. $(S(\mathfrak{g})/\sqrt{\operatorname{gr}(I)})^{G'}$ is Poisson-commutative
- 4. the action of G' on $\mathcal{V}(\operatorname{gr}(I))(\subset \mathfrak{g}^*)$ is coisotropic
- 5. $(\mathcal{U}(\mathfrak{g})/I)^{G'}$ is finitely generated as a $\mathcal{Z}(\mathfrak{g}')$ -module.

The same is true for smooth or unitary representations.

3 \Leftrightarrow 4 \Rightarrow 5 follows from the study of Hamiltonian Poisson *G*-varieties by I. Losev ('09).

To show $1 \Leftrightarrow 2$, we need the action

$$\begin{aligned} (\mathcal{U}(\mathfrak{g})/I)^{G'} &\curvearrowright (V \otimes_{\mathcal{U}(\mathfrak{g}')} V')^{K'} = H_0(\mathfrak{g}', K'; V \otimes V') \\ (V': \text{ irreducible } (\mathfrak{g}', K')\text{-module}). \end{aligned}$$

Theorem (K-)

Let V be an irreducible (\mathfrak{g}, K) -module. Set $I := \operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)$. Then the following conditions on V are equivalent:

- 1. $V|_{\mathfrak{g}',\mathcal{K}'}$ has uniformly bounded multiplicities
- 2. $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) < \infty$
- 3. $(S(\mathfrak{g})/\sqrt{\operatorname{gr}(I)})^{G'}$ is Poisson-commutative
- 4. the action of G' on $\mathcal{V}(\operatorname{gr}(I))(\subset \mathfrak{g}^*)$ is coisotropic
- 5. $(\mathcal{U}(\mathfrak{g})/I)^{G'}$ is finitely generated as a $\mathcal{Z}(\mathfrak{g}')$ -module.

The same is true for smooth or unitary representations.

 $3 \Leftrightarrow 4 \Rightarrow 5$ follows from the study of Hamiltonian Poisson G-varieties by I. Losev ('09).

To show $1 \Leftrightarrow 2$, we need the action

$$\begin{aligned} (\mathcal{U}(\mathfrak{g})/I)^{G'} &\curvearrowright (V \otimes_{\mathcal{U}(\mathfrak{g}')} V')^{K'} = H_0(\mathfrak{g}', K'; V \otimes V') \\ (V': \text{ irreducible } (\mathfrak{g}', K')\text{-module}). \end{aligned}$$

Remark $H_0(\mathfrak{g}', \mathcal{K}'; V \otimes V')^* \simeq \operatorname{Hom}_{\mathfrak{g}', \mathcal{K}'}(V, (V')_{\mathcal{K}'}^*)$

Theorem (K-)

Let V be an irreducible (\mathfrak{g}, K) -module. Set $I := \operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)$. Then the following conditions on V are equivalent:

- 1. $V|_{\mathfrak{g}',K'}$ has uniformly bounded multiplicities
- 2. $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) < \infty$
- 3. $(S(\mathfrak{g})/\sqrt{\operatorname{gr}(I)})^{G'}$ is Poisson-commutative
- 4. the action of G' on $\mathcal{V}(\operatorname{gr}(I))(\subset \mathfrak{g}^*)$ is coisotropic
- 5. $(\mathcal{U}(\mathfrak{g})/I)^{G'}$ is finitely generated as a $\mathcal{Z}(\mathfrak{g}')$ -module.

The same is true for smooth or unitary representations.

3 \Leftrightarrow 4 \Rightarrow 5 follows from the study of Hamiltonian Poisson *G*-varieties by I. Losev ('09).

To show $1 \Leftrightarrow 2$, we need the action

$$\begin{aligned} (\mathcal{U}(\mathfrak{g})/I)^{G'} &\curvearrowright (V \otimes_{\mathcal{U}(\mathfrak{g}')} V')^{K'} = H_0(\mathfrak{g}', K'; V \otimes V') \\ (V': \text{ irreducible } (\mathfrak{g}', K')\text{-module}). \end{aligned}$$

Theorem (K-)

Let V be an irreducible (\mathfrak{g}, K) -module. Set $I := \operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)$. Then the following conditions on V are equivalent:

- 1. $V|_{\mathfrak{g}',\mathcal{K}'}$ has uniformly bounded multiplicities
- 2. $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) < \infty$
- 3. $(S(\mathfrak{g})/\sqrt{\operatorname{gr}(I)})^{G'}$ is Poisson-commutative
- 4. the action of G' on $\mathcal{V}(\operatorname{gr}(I))(\subset \mathfrak{g}^*)$ is coisotropic
- 5. $(\mathcal{U}(\mathfrak{g})/I)^{G'}$ is finitely generated as a $\mathcal{Z}(\mathfrak{g}')$ -module.

The same is true for smooth or unitary representations.

3 \Leftrightarrow 4 \Rightarrow 5 follows from the study of Hamiltonian Poisson *G*-varieties by I. Losev ('09).

To show $1 \Leftrightarrow 2$, we need the action

$$\begin{aligned} (\mathcal{U}(\mathfrak{g})/I)^{G'} &\curvearrowright (V \otimes_{\mathcal{U}(\mathfrak{g}')} V')^{K'} = H_0(\mathfrak{g}', K'; V \otimes V') \\ (V': \text{ irreducible } (\mathfrak{g}', K') \text{-module}). \end{aligned}$$

Remark $H_0(\mathfrak{g}', \mathcal{K}'; V \otimes V')^* \simeq \operatorname{Hom}_{\mathfrak{g}', \mathcal{K}'}(V, (V')_{\mathcal{K}'}^*)$

Theorem (K-)

Let V be an irreducible (\mathfrak{g}, K) -module. Set $I := \operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)$. Then the following conditions on V are equivalent:

- 1. $V|_{\mathfrak{g}',\mathcal{K}'}$ has uniformly bounded multiplicities
- 2. $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) < \infty$
- 3. $(S(\mathfrak{g})/\sqrt{\operatorname{gr}(I)})^{G'}$ is Poisson-commutative
- 4. the action of G' on $\mathcal{V}(\operatorname{gr}(I))(\subset \mathfrak{g}^*)$ is coisotropic
- 5. $(\mathcal{U}(\mathfrak{g})/I)^{G'}$ is finitely generated as a $\mathcal{Z}(\mathfrak{g}')$ -module.

The same is true for smooth or unitary representations.

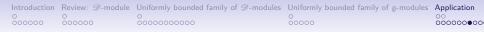
3 \Leftrightarrow 4 \Rightarrow 5 follows from the study of Hamiltonian Poisson *G*-varieties by I. Losev ('09).

To show 1 \Leftrightarrow 2, we need the action

$$\begin{aligned} (\mathcal{U}(\mathfrak{g})/I)^{G'} &\curvearrowright (V \otimes_{\mathcal{U}(\mathfrak{g}')} V')^{K'} = H_0(\mathfrak{g}', K'; V \otimes V') \\ (V': \text{ irreducible } (\mathfrak{g}', K') \text{-module}). \end{aligned}$$

Remark

 $H_0(\mathfrak{g}', \mathcal{K}'; \mathcal{V} \otimes \mathcal{V}')^* \simeq \operatorname{Hom}_{\mathfrak{g}', \mathcal{K}'}(\mathcal{V}, (\mathcal{V}')^*_{\mathcal{K}'})$



Definition

Let \mathcal{A} be a (unital associative) \mathbb{C} -algebra. A \mathbb{C} -coefficient non-commutative polynomial f is a *polynomial identity* of \mathcal{A} if

 $f(X_1, X_2, \ldots, X_n) = 0 \quad (\forall X_i \in \mathcal{A}).$

- If A is commutative, f(X, Y) = XY YX is a polynomial identity of A.
- If there is a surjection $\mathcal{A} \twoheadrightarrow \mathcal{B}$ of \mathbb{C} -algebras, then

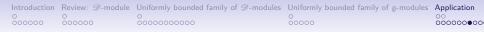
 $\{\text{polynomial identity of }\mathcal{A}\} \subset \{\text{polynomial identity of }\mathcal{B}\}.$

Definition

 $\operatorname{PI.deg}(\mathcal{A})$ is the supremum of *n* satisfying

 $\{\text{polynomial identity of }\mathcal{A}\} \subset \{\text{polynomial identity of }M_n(\mathbb{C})\}$.

•
$$\operatorname{PI.deg}(M_n(\mathbb{C})) = n$$
 (e.g. Amitsur–Levitzki '50)



Definition

Let \mathcal{A} be a (unital associative) \mathbb{C} -algebra. A \mathbb{C} -coefficient non-commutative polynomial f is a *polynomial identity* of \mathcal{A} if

$$f(X_1, X_2, \ldots, X_n) = 0 \quad (\forall X_i \in \mathcal{A}).$$

- If A is commutative, f(X, Y) = XY YX is a polynomial identity of A.
- If there is a surjection $\mathcal{A} \twoheadrightarrow \mathcal{B}$ of \mathbb{C} -algebras, then

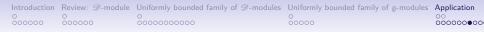
 $\{\text{polynomial identity of }\mathcal{A}\} \subset \{\text{polynomial identity of }\mathcal{B}\}.$

Definition

 $\operatorname{PI.deg}(\mathcal{A})$ is the supremum of *n* satisfying

 $\{\mathsf{polynomial} \ \mathsf{identity} \ \mathsf{of} \ \mathcal{A}\} \subset \{\mathsf{polynomial} \ \mathsf{identity} \ \mathsf{of} \ \mathcal{M}_n(\mathbb{C})\}$.

• $\operatorname{PI.deg}(M_n(\mathbb{C})) = n$ (e.g. Amitsur–Levitzki '50)



Definition

Let \mathcal{A} be a (unital associative) \mathbb{C} -algebra. A \mathbb{C} -coefficient non-commutative polynomial f is a *polynomial identity* of \mathcal{A} if

$$f(X_1, X_2, \ldots, X_n) = 0 \quad (\forall X_i \in \mathcal{A}).$$

- If A is commutative, f(X, Y) = XY YX is a polynomial identity of A.
- If there is a surjection $\mathcal{A} \twoheadrightarrow \mathcal{B}$ of \mathbb{C} -algebras, then

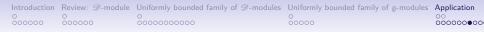
 $\{\text{polynomial identity of }\mathcal{A}\}\subset\{\text{polynomial identity of }\mathcal{B}\}\,.$

Definition

 $\operatorname{PI.deg}(\mathcal{A})$ is the supremum of n satisfying

 $\{\mathsf{polynomial} \ \mathsf{identity} \ \mathsf{of} \ \mathcal{A}\} \subset \{\mathsf{polynomial} \ \mathsf{identity} \ \mathsf{of} \ M_n(\mathbb{C})\}$.

• $\operatorname{PI.deg}(M_n(\mathbb{C})) = n$ (e.g. Amitsur–Levitzki '50)



Definition

Let \mathcal{A} be a (unital associative) \mathbb{C} -algebra. A \mathbb{C} -coefficient non-commutative polynomial f is a *polynomial identity* of \mathcal{A} if

$$f(X_1, X_2, \ldots, X_n) = 0 \quad (\forall X_i \in \mathcal{A}).$$

- If A is commutative, f(X, Y) = XY YX is a polynomial identity of A.
- If there is a surjection $\mathcal{A} \twoheadrightarrow \mathcal{B}$ of \mathbb{C} -algebras, then

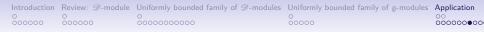
 $\{\text{polynomial identity of }\mathcal{A}\}\subset\{\text{polynomial identity of }\mathcal{B}\}\,.$

Definition

 $\operatorname{PI.deg}(\mathcal{A})$ is the supremum of *n* satisfying

 $\{\text{polynomial identity of } \mathcal{A}\} \subset \{\text{polynomial identity of } M_n(\mathbb{C})\}.$

• $\operatorname{PI.deg}(M_n(\mathbb{C})) = n$ (e.g. Amitsur–Levitzki '50)



Definition

Let \mathcal{A} be a (unital associative) \mathbb{C} -algebra. A \mathbb{C} -coefficient non-commutative polynomial f is a *polynomial identity* of \mathcal{A} if

$$f(X_1, X_2, \ldots, X_n) = 0 \quad (\forall X_i \in \mathcal{A}).$$

- If A is commutative, f(X, Y) = XY YX is a polynomial identity of A.
- If there is a surjection $\mathcal{A} \twoheadrightarrow \mathcal{B}$ of \mathbb{C} -algebras, then

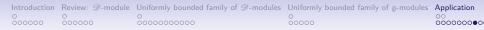
 $\{\text{polynomial identity of }\mathcal{A}\} \subset \{\text{polynomial identity of }\mathcal{B}\}.$

Definition

 $\operatorname{PI.deg}(\mathcal{A})$ is the supremum of *n* satisfying

 $\{\text{polynomial identity of } \mathcal{A}\} \subset \{\text{polynomial identity of } M_n(\mathbb{C})\}.$

•
$$\operatorname{PI.deg}(M_n(\mathbb{C})) = n$$
 (e.g. Amitsur–Levitzki '50)



$\operatorname{PI.deg}(\mathcal{A})$ and multiplicity

•
$$\mathcal{A} \xrightarrow{\exists} M_n(\mathbb{C}) \Rightarrow \operatorname{PI.deg}(\mathcal{A}) \ge n$$

• $\mathcal{A} \xrightarrow{\exists} \mathcal{B} \text{ or } \mathcal{B} \xrightarrow{\exists} \mathcal{A} \Rightarrow \operatorname{PI.deg}(\mathcal{A}) \geq \operatorname{PI.deg}(\mathcal{B})$

Proposition

Let $\{V_i\}_{i\in I}$ be a family of \mathcal{A} -modules. If $\mathcal{A} \curvearrowright \bigoplus_{i\in I} V_i$ is faithful,

 $\operatorname{PI.deg}(\mathcal{A}) \leq \sup \left\{ \operatorname{dim}(V_i) : i \in I \right\}.$

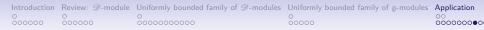
Proof.

It is obvious from $\mathcal{A} \hookrightarrow \prod_{i \in I} \operatorname{End}_{\mathbb{C}}(V_i)$.

Proposition

If $\ensuremath{\mathcal{A}}$ is noetherian and has at most countable dimension, then

 $\operatorname{PI.deg}(\mathcal{A}) = \sup \left\{ \operatorname{dim}(V) : V \text{ irreducible } \mathcal{A}\text{-module} \right\}.$



$\operatorname{PI.deg}(\mathcal{A})$ and multiplicity

•
$$\mathcal{A} \xrightarrow{\exists} M_n(\mathbb{C}) \Rightarrow \operatorname{PI.deg}(\mathcal{A}) \ge n$$

• $\mathcal{A} \xrightarrow{\exists} \mathcal{B} \text{ or } \mathcal{B} \xrightarrow{\exists} \mathcal{A} \Rightarrow \operatorname{PI.deg}(\mathcal{A}) \ge \operatorname{PI.deg}(\mathcal{B})$

Proposition

Let $\{V_i\}_{i\in I}$ be a family of \mathcal{A} -modules. If $\mathcal{A} \curvearrowright \bigoplus_{i\in I} V_i$ is faithful,

 $\operatorname{PI.deg}(\mathcal{A}) \leq \sup \left\{ \dim(V_i) : i \in I \right\}.$

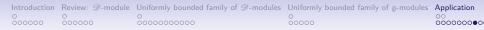
Proof.

It is obvious from $\mathcal{A} \hookrightarrow \prod_{i \in I} \operatorname{End}_{\mathbb{C}}(V_i)$.

Proposition

If $\ensuremath{\mathcal{A}}$ is noetherian and has at most countable dimension, then

 $\operatorname{PI.deg}(\mathcal{A}) = \sup \left\{ \operatorname{dim}(V) : V \text{ irreducible } \mathcal{A}\text{-module} \right\}.$



$\operatorname{PI.deg}(\mathcal{A})$ and multiplicity

•
$$\mathcal{A} \xrightarrow{\exists} M_n(\mathbb{C}) \Rightarrow \operatorname{PI.deg}(\mathcal{A}) \ge n$$

• $\mathcal{A} \xrightarrow{\exists} \mathcal{B} \text{ or } \mathcal{B} \xrightarrow{\exists} \mathcal{A} \Rightarrow \operatorname{PI.deg}(\mathcal{A}) \ge \operatorname{PI.deg}(\mathcal{B})$

Proposition

Let $\{V_i\}_{i\in I}$ be a family of \mathcal{A} -modules. If $\mathcal{A} \curvearrowright \bigoplus_{i\in I} V_i$ is faithful,

 $\operatorname{PI.deg}(\mathcal{A}) \leq \sup \left\{ \dim(V_i) : i \in I \right\}.$

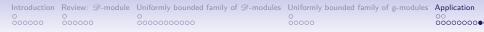
Proof.

It is obvious from $\mathcal{A} \hookrightarrow \prod_{i \in I} \operatorname{End}_{\mathbb{C}}(V_i)$.

Proposition

If $\ensuremath{\mathcal{A}}$ is noetherian and has at most countable dimension, then

 $PI.deg(\mathcal{A}) = \sup \left\{ \dim(V) : V \text{ irreducible } \mathcal{A}\text{-module} \right\}.$



Bounds

Theorem (K-)

Let V be an irreducible (\mathfrak{g}, K) -module. Set $I := \operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)$. Then $\exists C > 0$ independent of V and I s.t.

$$egin{aligned} &\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) \leq \sup_{V'} \dim(\operatorname{Hom}_{\mathfrak{g}',\mathcal{K}'}(V,V')) \ &\leq C \cdot \operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}). \end{aligned}$$

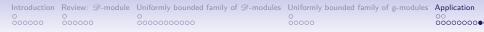
Proof of the upper bound.

We have seen that $\exists C > 0$ independent of V and I s.t.

$$\operatorname{Len}_{(\mathcal{U}(\mathfrak{g})/I)^{G'}}((V\otimes_{\mathcal{U}(\mathfrak{g}')}V')^{K'})\leq C.$$

This shows

 $\dim((V \otimes_{\mathcal{U}(\mathfrak{g}')} V')^{K'}) \leq C \cdot \operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'})$



Bounds

Theorem (K-)

Let V be an irreducible (\mathfrak{g}, K) -module. Set $I := \operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)$. Then $\exists C > 0$ independent of V and I s.t.

$$egin{aligned} &\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) \leq \sup_{V'} \dim(\operatorname{Hom}_{\mathfrak{g}',K'}(V,V')) \ &\leq C \cdot \operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}). \end{aligned}$$

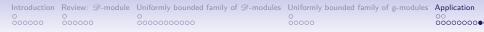
Proof of the upper bound.

We have seen that $\exists C > 0$ independent of V and I s.t.

$$\operatorname{Len}_{(\mathcal{U}(\mathfrak{g})/I)^{G'}}((V\otimes_{\mathcal{U}(\mathfrak{g}')}V')^{K'})\leq C.$$

This shows

 $\dim((V \otimes_{\mathcal{U}(\mathfrak{g}')} V')^{K'}) \leq C \cdot \operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'})$



Bounds

Theorem (K-)

Let V be an irreducible (\mathfrak{g}, K) -module. Set $I := \operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(V)$. Then $\exists C > 0$ independent of V and I s.t.

$$egin{aligned} &\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) \leq \sup_{V'} \dim(\operatorname{Hom}_{\mathfrak{g}',K'}(V,V')) \ &\leq C \cdot \operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}). \end{aligned}$$

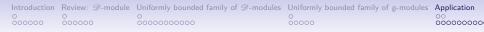
Proof of the upper bound.

We have seen that $\exists C > 0$ independent of V and I s.t.

$$\operatorname{Len}_{(\mathcal{U}(\mathfrak{g})/I)^{G'}}((V\otimes_{\mathcal{U}(\mathfrak{g}')}V')^{K'})\leq C.$$

This shows

 $\dim((V \otimes_{\mathcal{U}(\mathfrak{g}')} V')^{\mathcal{K}'}) \leq C \cdot \operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{\mathcal{G}'})$



Corollary

 $V|_{\mathfrak{g}',\mathcal{K}'}$ is multiplicity-free only if $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) = 1$. (If V is unitarizable, $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) = 1 \Leftrightarrow (\mathcal{U}(\mathfrak{g})/I)^{G'}$ is commutative.)

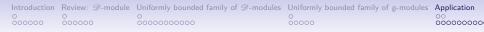
Corollary

The uniform boundedness of multiplicities depends only on complexifications of Lie algebras.

Example

 $(G_{\mathbb{R}}, G'_{\mathbb{R}}) = (GL(n, \mathbb{R}), O(n)), (GL(n, \mathbb{R}), O(p, q)) (p + q = n)$ The pairs have the same complexification $(GL(n, \mathbb{C}), O(n, \mathbb{C}))$ modulo inner automorphisms.

 $V|_{\mathcal{O}(n)} \text{ has uniformly bounded multiplicities} \\ \Leftrightarrow V|_{\mathfrak{o}(p,q),\mathcal{O}(p)\times\mathcal{O}(q)} \text{ has uniformly bounded multiplicities}$



Corollary

 $V|_{\mathfrak{g}',\mathcal{K}'}$ is multiplicity-free only if $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) = 1$. (If V is unitarizable, $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) = 1 \Leftrightarrow (\mathcal{U}(\mathfrak{g})/I)^{G'}$ is commutative.)

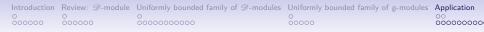
Corollary

The uniform boundedness of multiplicities depends only on complexifications of Lie algebras.

Example

 $(G_{\mathbb{R}}, G'_{\mathbb{R}}) = (GL(n, \mathbb{R}), O(n)), (GL(n, \mathbb{R}), O(p, q)) (p + q = n)$ The pairs have the same complexification $(GL(n, \mathbb{C}), O(n, \mathbb{C}))$ modulo inner automorphisms.

 $V|_{O(n)}$ has uniformly bounded multiplicities $\Leftrightarrow V|_{\mathfrak{o}(p,q),O(p)\times O(q)}$ has uniformly bounded multiplicities



Corollary

 $V|_{\mathfrak{g}',\mathcal{K}'}$ is multiplicity-free only if $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) = 1$. (If V is unitarizable, $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) = 1 \Leftrightarrow (\mathcal{U}(\mathfrak{g})/I)^{G'}$ is commutative.)

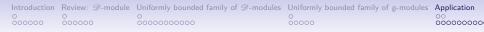
Corollary

The uniform boundedness of multiplicities depends only on complexifications of Lie algebras.

Example

 $(G_{\mathbb{R}}, G'_{\mathbb{R}}) = (GL(n, \mathbb{R}), O(n)), (GL(n, \mathbb{R}), O(p, q)) (p + q = n)$ The pairs have the same complexification $(GL(n, \mathbb{C}), O(n, \mathbb{C}))$ modulo inner automorphisms.

> $V|_{O(n)}$ has uniformly bounded multiplicities $\Leftrightarrow V|_{\mathfrak{o}(p,q),O(p)\times O(q)}$ has uniformly bounded multiplicities



Corollary

 $V|_{\mathfrak{g}',\mathcal{K}'}$ is multiplicity-free only if $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) = 1$. (If V is unitarizable, $\operatorname{PI.deg}((\mathcal{U}(\mathfrak{g})/I)^{G'}) = 1 \Leftrightarrow (\mathcal{U}(\mathfrak{g})/I)^{G'}$ is commutative.)

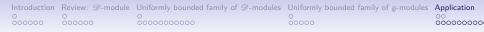
Corollary

The uniform boundedness of multiplicities depends only on complexifications of Lie algebras.

Example

 $(G_{\mathbb{R}}, G'_{\mathbb{R}}) = (GL(n, \mathbb{R}), O(n)), (GL(n, \mathbb{R}), O(p, q)) (p + q = n)$ The pairs have the same complexification $(GL(n, \mathbb{C}), O(n, \mathbb{C}))$ modulo inner automorphisms.

 $V|_{O(n)}$ has uniformly bounded multiplicities $\Leftrightarrow V|_{\mathfrak{o}(p,q),O(p)\times O(q)}$ has uniformly bounded multiplicities



• $L_{\mathbb{R}} \ltimes N_{\mathbb{R}} = P_{\mathbb{R}} \subset G_{\mathbb{R}}$: parabolic subgroup

Theorem (K-)

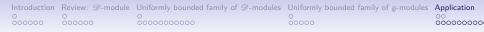
Assume that G/P is a spherical G'-variety. Then \exists reductive subgroup $L'_{\mathbb{R}} \subset L_{\mathbb{R}} \cap G'_{\mathbb{R}}$ (concretely computable) s.t.

 $\operatorname{Ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}}(V_{L})|_{G'_{\mathbb{R}}} \text{ has uniformly bounded multiplicities}$ $\Leftrightarrow V_{L}|_{L'_{\mathbb{R}}} \text{ has uniformly bounded multiplicities}$

for any irreducible smooth admissible Fréchet rep. V_L of $L_{\mathbb{R}}$.

This is an analogue of

- algebraic representation case of reductive algebraic groups / $\mathbb C$ (F. Sato '93, K- '14),
- the propagation theorem in the theory of visible actions (T. Kobayashi '97, '13).



• $L_{\mathbb{R}} \ltimes N_{\mathbb{R}} = P_{\mathbb{R}} \subset G_{\mathbb{R}}$: parabolic subgroup

Theorem (K-)

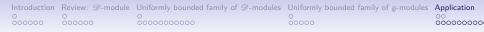
Assume that G/P is a spherical G'-variety. Then \exists reductive subgroup $L'_{\mathbb{R}} \subset L_{\mathbb{R}} \cap G'_{\mathbb{R}}$ (concretely computable) s.t.

 $Ind_{P_{\mathbb{R}}}^{G_{\mathbb{R}}}(V_{L})|_{G'_{\mathbb{R}}} \text{ has uniformly bounded multiplicities}$ $\Leftrightarrow V_{L}|_{L'_{\mathbb{R}}} \text{ has uniformly bounded multiplicities}$

for any irreducible smooth admissible Fréchet rep. V_L of $L_{\mathbb{R}}$.

This is an analogue of

- algebraic representation case of reductive algebraic groups / $\mathbb C$ (F. Sato '93, K- '14),
- the propagation theorem in the theory of visible actions (T. Kobayashi '97, '13).



• $L_{\mathbb{R}} \ltimes N_{\mathbb{R}} = P_{\mathbb{R}} \subset G_{\mathbb{R}}$: parabolic subgroup

Theorem (K-)

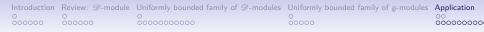
Assume that G/P is a spherical G'-variety. Then \exists reductive subgroup $L'_{\mathbb{R}} \subset L_{\mathbb{R}} \cap G'_{\mathbb{R}}$ (concretely computable) s.t.

 $\begin{aligned} &\operatorname{Ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}}(V_{L})|_{G'_{\mathbb{R}}} \text{ has uniformly bounded multiplicities} \\ &\Leftrightarrow V_{L}|_{L'_{\mathbb{R}}} \text{ has uniformly bounded multiplicities} \end{aligned}$

for any irreducible smooth admissible Fréchet rep. V_L of $L_{\mathbb{R}}$.

This is an analogue of

- algebraic representation case of reductive algebraic groups / $\mathbb C$ (F. Sato '93, K- '14),
- the propagation theorem in the theory of visible actions (T. Kobayashi '97, '13).



• $L_{\mathbb{R}} \ltimes N_{\mathbb{R}} = P_{\mathbb{R}} \subset G_{\mathbb{R}}$: parabolic subgroup

Theorem (K-)

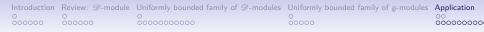
Assume that G/P is a spherical G'-variety. Then \exists reductive subgroup $L'_{\mathbb{R}} \subset L_{\mathbb{R}} \cap G'_{\mathbb{R}}$ (concretely computable) s.t.

 $\begin{aligned} &\operatorname{Ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}}(V_{L})|_{G'_{\mathbb{R}}} \text{ has uniformly bounded multiplicities} \\ &\Leftrightarrow V_{L}|_{L'_{\mathbb{R}}} \text{ has uniformly bounded multiplicities} \end{aligned}$

for any irreducible smooth admissible Fréchet rep. V_L of $L_{\mathbb{R}}$.

This is an analogue of

- algebraic representation case of reductive algebraic groups / $\mathbb C$ (F. Sato '93, K- '14),
- the propagation theorem in the theory of visible actions (T. Kobayashi '97, '13).

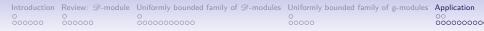


Induction

We can treat a similar problem for

$$\sup_{V} \dim(\operatorname{Hom}_{\mathfrak{g}',\mathcal{K}'}(V|_{\mathfrak{g}',\mathcal{K}'},V')) \coloneqq \sup_{V} \dim(\operatorname{Hom}_{\mathcal{G}_{\mathbb{R}}}(V,\operatorname{Ind}_{\mathcal{G}_{\mathbb{R}}'}^{\mathcal{G}_{\mathbb{R}}}(V'))).$$

In fact, it can be viewed as the branching problem from $\mathcal{O}(G/G') \otimes \mathcal{U}(\mathfrak{g})$ to $\mathcal{U}(\mathfrak{g})$.



Induction

We can treat a similar problem for

$$\sup_{V} \dim(\operatorname{Hom}_{\mathfrak{g}',\mathcal{K}'}(V|_{\mathfrak{g}',\mathcal{K}'},V')) \coloneqq \sup_{V} \dim(\operatorname{Hom}_{G_{\mathbb{R}}}(V,\operatorname{Ind}_{G_{\mathbb{R}}'}^{G_{\mathbb{R}}}(V'))).$$

In fact, it can be viewed as the branching problem from $\mathcal{O}(G/G') \otimes \mathcal{U}(\mathfrak{g})$ to $\mathcal{U}(\mathfrak{g})$.

Summary

Can

- Boundedness of lengths of modules
- Boundedness of the number of irreducible modules
- Boundedness of multiplicities in restrictions and inductions

Can not

- Represent the constants C explicitly.
- Multiplicity-free?
- Irreducible?
- Unique irreducible quotient?
- Applicable only to algebraic groups (modulo connected components and covering).

Introduction	Review: <i>D</i> -module	Uniformly bounded family of \mathscr{D} -modules	Uniformly bounded family of g-modules	Application
0	0	0	0	•0
000000	000000	0000000000	00000	000000000

Thank you for listening!

Introduction	Review: <i>D</i> -module	Uniformly bounded family of \mathscr{D} -modules	Uniformly bounded family of g-modules	Application
0	0	0	0	0.
000000	000000	0000000000	00000	0000000000

White board