Applications of Hecke Algebra in the Representation Theory of Reductive Groups

Ma, Jia-Jun
School of Mathematical Sciences
Xiamen University
Department of Mathematics
Xiamen University Malaysia

BICMR
4 Sept, 2023

Two questions

- Counting special unipotent representations of real reductive groups.
■ Determining the theta correspondence over finite fields.
- Why discuss them in a single talk?

Barbasch-Vogan's definition of special unipotent representation

G : a real reductive group \rightsquigarrow Langlands dual \mathbf{G}^{\vee}.
Nilpotent orbit $\check{\mathcal{O}}$ of \mathbf{G}^{\vee}.
\rightsquigarrow an infinitesimal character $\lambda_{\mathcal{O}}$
\rightsquigarrow the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}}$ with inf. char. $\lambda_{\check{\mathcal{O}}}$

- Definition (Barbasch-Vogan):

An irreducible G-repn. is called special unipotent if

$$
\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi)=\mathcal{I}_{\check{\mathcal{O}}}
$$

- $\operatorname{Unip}_{\check{\mathcal{O}}}(G):=\{$ special unipotent repn. attached to $\check{\mathcal{O}}\}$.

■ \#Unip $\operatorname{UH}_{\check{\mathcal{O}}}(G)=$??

Examples

$$
G=\mathrm{SL}_{2}(\mathbb{R})
$$

- $\check{\mathcal{O}}=$ principal orbit:
$\operatorname{Unip}_{\check{\mathcal{O}}}(G)=\{$ trivial repn. $\}$
- $\check{\mathcal{O}}=$ zero orbit:
$\operatorname{Unip}_{\check{\mathcal{O}}}(G)=$
\{ 2 limit of discrete series, a spherical principle series $\}$
In [17]: M print(f"\#Unip_(3)(SL_2(R) $=\{\operatorname{countC}((3))\} "$, print(f"\#Unip_(1,1,1)(SL_2(R) = \{countC((1,1,1)) \}")
\#Unip_(3)(SL_2(R) = 1
\#Unip_(1,1,1)(SL_2(R) = 3
■ https://www.kaggle.com/hoxidema/ counting-special-unipotent-repn

Unitary dual

Complex associated variety

- $\pi \in \operatorname{Unip}_{\check{\mathcal{O}}}(G)$
$\Longleftrightarrow \pi$ has inf. char. $\lambda_{\check{\mathcal{O}}}$ and $\operatorname{AV}_{\mathbb{C}}(\pi)=\overline{\mathcal{O}}$
- $\operatorname{Nil}\left(G_{\mathbb{C}}\right) \ni \mathcal{O}$
$:=$ the Lusztig-Spaltenstein-Barbasch-Vogan dual of $\check{\mathcal{O}}$.
- \mathcal{O} is a special nilpotent orbit.
- Question: For $\mathcal{O} \in \operatorname{Nil}\left(G_{\mathbb{C}}\right)$, inf. char. λ, $\#\left\{\pi \in \operatorname{Irr}(G):\right.$ inf. char. $\pi=\lambda$ and $\left.\operatorname{AV}_{\mathbb{C}}(G)=\overline{\mathcal{O}}\right\}=? ?$.
- This is question also relevent if one consider non-special unipotent representations (defined by Losev, Mason-Brown, and Matvieievskyi).

Counting irr. repn. with a fixed asso. variety (integral case)

- Assume: inf. char. λ is integral.

Fact (Joseph):
AV (prim. ideal w. inf. char. λ) $=\overline{\text { a special nilpotent orbit }}$ Double cell \mathcal{D} in $\operatorname{Irr}(W) \longleftrightarrow$ the special nilpotent orbit \mathcal{O}.
■ $\operatorname{Coh}_{[\lambda]}(G)$: the coherent continuation repn. based on $\lambda+X^{*}$.
■ $W_{\lambda}:=\{w \in W \mid w \lambda=\lambda\}$

Theorem

If E_{8} is not a simple factor of G, then

$$
\begin{aligned}
& \#\left\{\pi \in \operatorname{Irr}(G) \mid \text { inf. char. }=\lambda, \operatorname{AV}_{\mathbb{C}}(\pi)=\overline{\mathcal{O}}\right\} \\
& =\sum_{\tau \in \mathcal{D}} \operatorname{dim} \tau^{W_{\lambda}} \cdot\left[\tau: \operatorname{Coh}_{[\lambda]}(G)\right]
\end{aligned}
$$

Counting unipotent representations

- Complex reductive groups, $\check{\mathcal{O}}$ integral, (Barbasch-Vogan) $\# \operatorname{Unip}_{\check{\mathcal{O}}}(G)=\#$ Lusztig's canonical quotient of $\check{\mathcal{O}}$.
Assume: $\check{\mathcal{O}}$ has good parity
- $\mathrm{U}(p, q)$, (Barbasch-Vogan) \# $\operatorname{Unip}_{\check{\mathcal{O}}}(G)=$ \# real forms of its BV-dual \mathcal{O}.
■ $\mathrm{SU}(p, q)$, restriction from that of $\mathrm{U}(p, q)$ or a double cover of $\mathrm{U}(p, q)$
- Real classical groups
\#Unip $\operatorname{O}_{\check{\mathcal{O}}}(G)=$ painted bi-partitions (BMSZ).
Construction: theta correspondence
- Spin group
very few genuine special unipotent representations.
- Exceptional group

Atlas of Lie group

Dual pairs over finite fields

■ $F:=\mathbb{F}_{q}$ a finite field, s.t. $|F|=q$.

- $\left(V, V^{\prime}\right)$: a dual pair of Hermitian spaces

	$G=\mathrm{U}(V)$	$G^{\prime}=\mathrm{U}\left(V^{\prime}\right)$	
(A)	unitary gp.	unitary gp.	
(B)	odd orthogonal gp.	"metaplectic" gp.	
(D)	even orthogonal gp.	symplectic gp.	$p \neq 2^{r}$
(C)	symplectic gp.	even orthogonal gp.	
(\widetilde{C})	"metaplectic" gp.	odd orthogonal gp.	

- We focus on case (C) today.

Theta lifting/Howe correspondence

- V symplectic space, V^{\prime} quadratic space.
- (modified) Weil representation

$$
\omega_{V, V^{\prime}}:=\left(1 \boxtimes\left(\xi \circ \operatorname{det}_{V^{\prime}}\right)^{\frac{1}{2} \operatorname{dim}_{F} V}\right) \otimes \omega_{\psi, V \otimes_{F} V^{\prime}}
$$

($\omega_{\psi, V \otimes_{F} V^{\prime}}$: Weil representation of $\mathrm{U}\left(V \otimes_{F} V^{\prime}\right)$ a la Gérardin, ξ the quadratic character of F^{\times})

- Orthogonal gp. acts geometrically on the Schrödinger model.

■ Compatible with the conservation relation.

Theta lift functor

Theta lift functor

$$
\begin{aligned}
\Theta_{V, V^{\prime}}: \operatorname{Rep}(G) & \longrightarrow \operatorname{Rep}\left(G^{\prime}\right) \\
\sigma & \mapsto\left(\omega_{V, V^{\prime}} \otimes \sigma^{\vee}\right)_{G}
\end{aligned}
$$

Srinivasan

Moy
Aubert Michel Rouquier

Srinivasan, Weil representations of finite classical groups (1979) Case (i), $m \leqq n$.
(4.3) $\quad \omega_{\text {unif }}=\sum_{k=0}^{m-1} \sum_{(T) \subset S p_{2 k}} \frac{1}{|W(T)|} \sum_{\theta \in T} \varepsilon \varepsilon^{\prime} R_{T \times S p_{2 n-2 k}}^{S p_{2 n}}(\theta \times 1) \times R_{T \times S O_{2 m-2 k}^{s} \sigma_{2}^{\xi}{ }_{2}^{\prime}}(\theta \times 1)$

$$
+\sum_{\substack{(T) \subset S p_{2} m \\ T \in S O 2 m}} \varepsilon(-1)^{n+m} \cdot \frac{2}{|W(T)|} \sum_{\theta \in T} R_{T}^{S_{2 n}}(\theta) \times R_{T}^{S O 2 m}(\theta)
$$

Conservation relation

- $\mathcal{V}^{\prime}, \widetilde{\mathcal{V}}^{\prime}$: Witt towers of even dim. quadratic spaces

$$
\operatorname{disc}\left(\mathcal{V}^{\prime}\right) \neq \operatorname{disc}\left(\widetilde{\mathcal{V}}^{\prime}\right)
$$

- First occurrence index

$$
n_{V, \mathcal{V}^{\prime}}(\sigma):=\min \left\{\operatorname{dim} V^{\prime} \mid \Theta_{V, V^{\prime}}(\sigma) \neq 0, V^{\prime} \in \mathcal{V}^{\prime}\right\}
$$

Theorem (Conservation relation I)

If trivial repn. of $\mathrm{GL}_{1}\left(\mathbb{F}_{q}\right)$ is not in the cuspidal support of σ, then

$$
n_{V, \mathcal{V}^{\prime}}(\sigma)+n_{V, \widetilde{\mathcal{V}}^{\prime}}(\sigma)=2 \operatorname{dim} V+\delta, \quad \text { with } \delta=2
$$

- Sun-Zhu (2014):
$\delta=\max \{$ dim. of an anisotropic quadratic space $\}$
■ Pan (2002): reduction to p-adic unip. repn. (cuspidal)
■ Pan (2022):reduction to the unipotent case. (general)

Parabolic inductions relevant to θ-correspondence

Definition: σ is theta-cuspidal $\Leftrightarrow \mathbf{1}$ of $\mathrm{GL}_{1}\left(\mathbb{F}_{q}\right) \notin$ cusp. supp. of σ.

- $V_{l}=V \oplus \mathbb{H}^{l}$ (\mathbb{H} the hyperbolic space)

■ A parabolic subgp. P_{l} of $G_{l}:=\mathrm{U}\left(V_{l}\right)$ with Levi

$$
L_{l}:=\underbrace{\mathrm{GL}_{1}(F) \times \cdots \times \mathrm{GL}_{1}(F)}_{l \text {-terms }} \times \mathrm{U}(V)
$$

- Harish-Chandra series:
$\mathcal{E}(l, \sigma)=\{$ irr. constituents in $\operatorname{Ind}_{P_{l}}^{G_{l}} \underbrace{1 \otimes \cdots \otimes 1}_{l \text {-terms }} \otimes \sigma\}$.

$$
\sigma_{l}:=\left(\begin{array}{ccccc}
1 & & & & \\
& \ddots & & & \\
& & \mathbf{1} & & \\
& & & \sigma & \\
& & & & \ddots
\end{array}\right)
$$

Hekce algebra $\mathcal{H}_{l, \sigma}:=\operatorname{End}_{G_{l}}\left(\operatorname{Ind}_{P_{l}}^{G_{l}} \sigma_{l}^{\vee}\right)$

■ Howlett-Lehrer + Lusztig:
$\mathcal{H}_{l, \sigma} \cong$ the Hecke algebra of W_{l} with unequal parameters
■ $\operatorname{Norm}_{\mathrm{U}\left(V_{l}\right)}\left(L_{l}\right) / L_{l} \cong \mathrm{~W}_{l}:=\mathrm{S}_{l} \ltimes\{ \pm 1\}^{l}$.

■ $\mathcal{H}_{l, \sigma}=\left\langle T_{s} \mid s=s_{1}, \cdots, s_{l-1}, t_{l}\right\rangle$ with Quadratic Relations

$$
\begin{aligned}
\left(T_{s_{i}}+1\right)\left(T_{s_{i}}-q\right) & =0
\end{aligned} \quad \forall 1 \leq i \leq l-1 ~=~\left(T_{t_{l}}-C_{1}\right)\left(T_{t_{l}}-C_{2}\right)=0 \quad \text { with } \quad q^{\mu}=-\frac{C_{1}}{C_{2}}
$$

The operator $T_{t_{l}}$

$$
\left(T_{t_{l}}-C_{1}\right)\left(T_{t_{l}}-C_{2}\right)=0 \quad \text { with } \quad q^{\mu}=-\frac{C_{1}}{C_{2}}
$$

- Let V^{\prime} and \widetilde{V}^{\prime} be the first occurnce spaces in \mathcal{V}^{\prime} and $\widetilde{\mathcal{V}}^{\prime}$.

■ Compute the $T_{l^{-}}$-action on $\operatorname{Hom}_{G_{l}}\left(\operatorname{Ind}_{P_{l}}^{G_{l}} \sigma_{l}, \omega_{V_{l}, V^{\prime}}\right)$

$$
\begin{aligned}
& C_{1}=\gamma_{V^{\prime}} q^{\operatorname{dim} V+\frac{1}{2} \delta-\frac{1}{2} \operatorname{dim} V^{\prime}} \\
& C_{2}=\gamma_{\widetilde{V}^{\prime}} q^{\operatorname{dim} V+\frac{1}{2} \delta-\frac{1}{2} \operatorname{dim} \widetilde{V}^{\prime}}
\end{aligned}
$$

$$
C_{1} C_{2}=-T_{t_{l}}^{2}(1)=-q^{\operatorname{dim} V+\frac{1}{2} \delta}
$$

- Compare the powers \Rightarrow Conservation relation.

generic Hekce algebra

- $\mathrm{H}_{l, \mu}=\left\langle T_{s} \mid s=s_{1}, \cdots, s_{l-1}, t_{l}\right\rangle$ free over $\mathbb{Z}\left[\nu^{\frac{1}{2}}, \nu^{-\frac{1}{2}}\right]$. with Quadratic Relations

$$
\begin{aligned}
\left(T_{s_{i}}+1\right)\left(T_{s_{i}}-\nu\right) & =0 \quad \forall 1 \leq i \leq l-1 \\
\left(T_{t_{l}}+1\right)\left(T_{t_{l}}-\nu^{\mu}\right) & =0
\end{aligned}
$$

Hecke bimodule and its deformation

Assume: theta-cuspidal $\sigma \stackrel{\Theta}{\longleftrightarrow}$ theta-cuspidal σ^{\prime},
■ Consider the $\mathcal{H}_{l, \sigma} \times \mathcal{H}_{l^{\prime}, \sigma^{\prime}}$-module:

$$
\mathcal{M}:=\operatorname{Hom}_{G_{l} \times G_{l^{\prime}}^{\prime}}\left(\operatorname{Ind}_{P_{l}}^{G_{l}} \sigma_{l} \otimes \operatorname{Ind}_{P_{l^{\prime}}^{\prime}}^{G_{l^{\prime}}^{\prime}} \sigma_{l^{\prime}}^{\prime}, \omega_{V_{l}, V_{l^{\prime}}^{\prime}}\right)
$$

Tits deformation

$\begin{array}{ccccc}\mathcal{H}_{l, \sigma} \times \mathcal{H}_{l^{\prime}, \sigma^{\prime}} & \stackrel{\nu=q}{\longleftrightarrow} & \mathrm{H}_{l, \mu} \times \mathrm{H}_{l^{\prime}, \mu^{\prime}} \quad \xrightarrow{\nu=1} & \mathbb{C}\left[\mathrm{~W}_{l} \times \mathrm{W}_{l^{\prime}}\right] \\ \Downarrow & \Downarrow & \Downarrow\end{array}$
$\operatorname{Rep}_{\mathbb{C}}\left(\mathcal{H}_{l, \sigma} \times \mathcal{H}_{l^{\prime}, \sigma^{\prime}}\right) \longleftarrow \operatorname{Rep}_{R}\left(\mathrm{H}_{l, \mu} \times \mathrm{H}_{l^{\prime}, \mu^{\prime}}\right) \rightarrow \operatorname{Rep}_{\mathbb{C}}\left(\mathrm{W}_{l} \times \mathrm{W}_{l^{\prime}}\right)$

Main Theorem (assume $\sigma \stackrel{\Theta}{\longleftrightarrow} \sigma^{\prime}$ and theta-cuspidal)

Theorem (M.-Qiu-Zou)

There is an $\mathrm{H}_{l, \mu} \times \mathrm{H}_{l^{\prime}, \mu^{\prime}}$-module M (constructed explicitly) such that
$■ \mathrm{M} \otimes_{R} \mathbb{C}_{q} \cong \mathcal{M}:=\operatorname{Hom}_{G_{l} \times G_{l^{\prime}}^{\prime}}\left(\operatorname{Ind}_{P_{l}}^{G_{l}} \sigma_{l} \otimes \operatorname{Ind}_{P_{l^{\prime}}^{\prime}}^{G_{l^{\prime}}^{\prime}} \sigma_{l^{\prime}}^{\prime}, \omega_{V_{l}, V_{l^{\prime}}^{\prime}}\right)$
■ $\mathrm{M} \otimes_{R} \mathbb{C}_{1} \cong \sum_{k=0}^{\min \left\{l, l^{\prime}\right\}} \operatorname{Ind}_{\mathrm{W}_{l-k} \times \Delta \mathrm{W}_{k} \times \mathrm{W}_{l^{\prime}-k}} \mathbf{W}_{l-k} \boxtimes \varepsilon_{k} \boxtimes \mathbf{1}_{l^{\prime}-k}$.

■ Theorem + Adams-Moy \Rightarrow Aubert-Michel-Rouquier + Pan
■ Theorem \Rightarrow General form of the conservation relation.

■ When $\mu=1, \mathrm{M}$ has a geometric realization.

Determine the correspondence between cuspidal repns.

- Lusztig's map $\mathcal{E}(G, s) \longrightarrow \mathcal{E}\left(G_{s}^{*}, 1\right)$.

■ Unipotent cuspidal repn are rare.
Assume: $\mathcal{E}(G, s) \ni \sigma \leftrightarrow \sigma^{\prime} \in \mathcal{E}\left(G, s^{\prime}\right)$ are cuspidal.

- τ_{t} is cuspdial GL_{k} repn $(k \neq 1$ or $t \neq 1)$.
- Consider $\mathcal{H}_{\tau, \sigma}:=\operatorname{End}\left(\operatorname{Ind}_{\left(\mathrm{GL}_{k} \times G\right) U}^{G_{k}} \tau \otimes \sigma\right)$.

Lemma

$$
\mathcal{H}_{\tau, \sigma} \cong \mathcal{H}_{\tau, \sigma^{\prime}}
$$

- The lemma+conservation relation
\rightsquigarrow description of theta corr. between cuspidal repns
\rightsquigarrow complete description of theta over finite field.

■ Similar lemma holds in p-adic case.

Theta and Hecke algebra / \mathbb{R} ?

Thank you for listening!

