On the Takeda–Wood isomorphism for Hecke algebras and an intertwining relation

19 June 2023 Nankai University 29 June 2023 Hong Kong University, Number Theory Days

Wen-Wei Li

Peking University

Joint with Fei Chen (PKU).

References

- C. Bushnell and P. Kutzko, Smooth representations of reductive p-adic groups: structure theory via types, Proc. LMS, (3) 77 (1998).
- W. T. Gan and G. Savin, *Representations of metaplectic groups II: Hecke algebra correspondences*, Represent. Theory, 16 (2012).
- S. Takeda and A. Wood. *Hecke algebra correspondences for the metaplectic group*. Transactions of the AMS, 370 (2018).

Setting

- ∞ ∈ o ⊂ F: uniformizer of the ring of integers of a non-Archimedean local field;
- $\operatorname{char}(F) \neq 2$, and *p* denotes the characteristic of $\mathfrak{o}/\mathfrak{o} \simeq \mathbb{F}_q$.

We are interested in *smooth representations* over \mathbb{C} of connected reductive groups over *F* (or their coverings). Specifically:

- $(W, \langle \cdot | \cdot \rangle)$: symplectic *F*-vector space.
- *G* := Sp(*W*): the symplectic group *G*(*F*) is a locally profinite topological group.
- $\widetilde{\mathrm{Sp}}^{(2)}(W)$: the unique nontrivial twofold cover of $\mathrm{Sp}(W)$ (the METAPLECTIC GROUP).

More conveniently: the eightfold covering

 $1 \to \mu_8 \to \widetilde{\operatorname{Sp}}(W) \to \operatorname{Sp}(W) \to \mathtt{I}, \quad \mu_8 := \{z \in \mathbb{C}^\times : z^8 = \mathtt{I}\}.$

The metaplectic group $\tilde{G} := \widetilde{\operatorname{Sp}}(W)$ is explicitly described using

- a symplectic basis $e_1, \ldots, e_n, f_n, \ldots, f_1$ of W;
- an unitary additive character $\psi: F \to \mathbb{C}^{\times}$, trivial on $4 \cdot \mathfrak{o}$ but nontrivial on larger ideals.

It carries the *Weil representation* $\omega_{\psi} = \omega_{\psi}^+ \oplus \omega_{\psi}^-$ realized on the Schwartz space $S(\bigoplus_{i=1}^n Fe_i)$.

We are interested in *genuine representations*, i.e. smooth representations of \tilde{G} such that μ_8 acts by $\mu_8 \hookrightarrow \mathbb{C}^{\times}$, such as ω_{ψ}^{\pm} .

Our normalization

The ω_{ψ} is constructed using the Heisenberg group $H(W):=W\times F$ with

$$(x,s)(y,t) = (x+y,s+t+\langle x|y\rangle).$$

Relevance of the covering \tilde{G}

To mention a few:

- There are Archimedean and global avatars of \tilde{G} .
- Θ -lifts, Fourier–Jacobi models, etc.
- As a key example of *covering groups*, studied by Matsumoto, ..., Deligne, Weissman, Fan Gao, Gaitsgory–Lysenko, et al.
- In particular, \tilde{G} serves as a testing ground for Langlands program for coverings (Weissman).

Long-term goal

In some sense, \tilde{G} is "close to" being a classical group. Can we achieve an *endoscopic classification* for genuine representations of \tilde{G} à la Arthur, at least when char(F) = 0?

Setting 000●	The types 0000	Takeda–Wood isomorphism 00000	JACQUET FUNCTOR AND INDUCTION	INTERTWINING OPERATORS	Prospects 00
	C 1	и. т. 1 <u>1</u> 1	1 .1 1 .	.1 , 11 ,	

- Good news # 1: In the global case with char = 0, the stable trace formula for \tilde{G} is now available.
- Bad (?) news: An extra difficulty for covering groups —

Things get wild when F is dyadic (i.e. p = 2).

For example, $\tilde{G} \rightarrow G(F)$ is no longer split over $G(\mathfrak{o})$.

Good news # 2

Some "vector-valued" variants for \tilde{G} of the Iwahori–Hecke algebras can be handled.

- $p \neq 2$: Gan–Savin (2012).
- *p* = 2: Takeda–Wood (2018)

This is achieved by studying suitable TYPES of ω_{ψ}^{\pm} .

Lattices and compact open subgroups

$$\begin{aligned} \mathcal{L}_i &:= \bigoplus_{j=1}^n \mathfrak{o}e_i \oplus \bigoplus_{1 \leq j \leq i} \mathfrak{o} \mathfrak{o}f_j \oplus \bigoplus_{j>i} \mathfrak{o}f_j \ \subset W, \\ K_i &:= \mathrm{Stab}_{G(F)}(\mathcal{L}_i), \quad i = 0, \dots, n. \end{aligned}$$

- $K_i = \operatorname{Stab}_{G(F)}(z_i)$ where z_0, \ldots, z_n are the vertices of the standard alcove of the affine building, with preimages $\widetilde{K}_i \subset \widetilde{G}$;
- K_0, \ldots, K_n represent the maximal open subgroups, up to conjugacy;
- *K*_o is the standard hyperspecial subgroup;
- $I := \bigcap_i K_i$ is the standard Iwahori subgroup;
- $J := \bigcap_{i \neq 0} K_i$.

The structures of *I* and *J* are accessible via Bruhat–Tits theory.

For $0 \leq i \leq n$, we have the \widetilde{K}_i -submodules of $\omega_{\psi}^{\pm}|_{\widetilde{K}_i}$:

$$\begin{split} \tau_i^{\pm} &= \bigotimes_{j < i} \mathbb{S}(\mathfrak{o}f_j/2\mathfrak{oo}\mathfrak{o}f_j)^{\pm} \otimes \bigotimes_{j \ge i} \mathbb{S}(\mathfrak{o}f_j/2\mathfrak{o}f_j),\\ \dim \tau_i^{\pm} &= \frac{1}{2}q^{en}(q^i \pm 1), \quad e := \begin{cases} e(F|\mathbb{Q}_2), & p = 2\\ 0, & p \neq 2. \end{cases} \end{split}$$

We will mainly focus on

- $\tau_o = \tau_o^+$: as an \widetilde{I} -module.
- τ_1^- : an J-module, noting that $J = I \sqcup Is_0 I$, with s_0 being the simple affine reflection.

These representations have a reasonably concrete description via Schrödinger's model for ω_{ψ}^{\pm} .

Hecke algebras in general

General reference: Bushnell–Kutzko (1997)

R: locally profinite group, K: compact open subgroup, (τ, V_{τ}) : finite-dimensional K-module.

$$\mathcal{H}(R//K;\tau) := \left\{ f: R \to \operatorname{End}_{\mathbb{C}}(\mathbb{V}_{\tau}^{\vee}), \ C_{c}^{\infty}, \ f(k_{1}rk_{2}) = \check{\tau}(k_{1})f(r)\check{\tau}(k_{2}). \right\}.$$

It is an algebra under convolution. For each smooth R-representation $\pi,$ the space

$$\mathbf{M}_{\tau}(\pi) := \operatorname{Hom}_{K}(\tau, \pi) \simeq (V_{\tau}^{\vee} \otimes V_{\pi})^{K}:$$

is functorially a left $\mathcal{H}(R//K; \tau)$ -module.

The goal of Type Theory. Realize each Bernstein component as a category of $\mathcal{H}(R//K; \tau)$ -modules, by constructing (K, τ) .

Consequence of Takeda–Wood isomorphism — preview

Let $\mathfrak{G}^{\pm}_{\psi}$ be the Bernstein component (a subcategory of the category of smooth genuine \tilde{G} -representations) containing ω^{\pm}_{ψ} .

Define

$$H^+_{\psi} := \mathcal{H}(\tilde{G}//\tilde{I};\tau_{0}), \quad H^-_{\psi} := \mathcal{H}(\tilde{G}//\tilde{J};\tau_{1}^{-}).$$

Theorem (Gan–Savin for $p \neq 2$ **, Takeda–Wood for all** p**)** The functors \mathbf{M}_{τ_0} and $\mathbf{M}_{\tau_1^-}$ induce equivalences

$$\mathfrak{G}^{\pm}_{\psi} \xrightarrow{\sim} H^{\pm}_{\psi} - \mathsf{Mod}.$$

In fact, H_{ψ}^+ is an analogue for \tilde{G} of the Iwahori–Hecke algebra.

Takeda–Wood isomorphism

- Let G^+ be the split SO(2n + 1) and G^- its non-split inner form.
- Let H^{\pm} be the Iwahori–Hecke algebra of G^{\pm} .

The isomorphism for H^+_{ψ} is obtained as follows (modulo technicalities).

- 1. Construct $T_0, \ldots, T_n \in H^+_{\psi}$ with $\text{Supp}(T_i) = \tilde{I}s_i\tilde{I}$ where s_i are the generators of the affine Weyl group of G;
- 2. Prove the braid and quadratic relations for them (see the next page);
- 3. Compare with the usual presentation of H^+ .

The same idea applies to H_{ψ}^{-} .

Affine Coxeter diagrams and quadratic relations

• For H^+_{ψ} :

Generators: T_0, \ldots, T_n . Quadratic relations:

 $T_{o}^{2}-1=o=(T_{i}-q)(T_{i}+1), \quad o < i \leq n.$

• For H_{ψ}^{-} :

Generators: T_1, \ldots, T_n . Quadratic relations:

$$(T_1 + 1)(T_1 - q^2) = 0 = (T_i + 1)(T_i - q), \quad 1 < i \le n.$$

The braid relations can be read off from the diagrams above.

The types Takeda-Wood isomorphism Jacquet functor and induction Intertwinninc operators for $p \neq 2$, Takeda-Wood for all p)

This recipe yields isomorphisms

 $\mathrm{TW}: H_{\psi}^{\pm} \xrightarrow{\sim} H^{\pm}$

between Hilbert \mathbb{C} -algebras with involution.

- Hilbert structure: connected to unitary structures in representation theory (eg. Plancherel formula).
- The steps 1 and 2 are largely combinatorial.
- The Weil representations ω_{ψ}^{\pm} are critical analytic ingredients in the proof. In fact, they are needed for defining H_{ψ}^{\pm} .

Corollaries

- 1. Equivalence between \mathcal{G}^{\pm}_{ψ} and the counterparts for G^{\pm} .
- 2. Preservation of Harish-Chandra μ-functions (= Plancherel densities), up to a precise constant.

Our task

To study/compare via the Takeda–Wood isomorphism: Jacquet functor, parabolic induction and intertwining operators.

Fact

The (semi-)standard Levi subgroups of \tilde{G} split via Schrödinger's model

$$\tilde{M} = \widetilde{\operatorname{Sp}}(W^{\flat}) \times \prod_{i \in I} \operatorname{GL}(n_i, F)$$
 in the 8-fold covering

where W^{\flat} is a non-degenerate symplectic subspace of W. The avatars on \tilde{M} of τ_i^{\pm} can thus be defined as

$$au_i^{ ilde{M},\pm} \coloneqq \underbrace{ au_i^{lat,\pm}}_{ ext{for $\widetilde{\operatorname{Sp}}(W^{lat})$}} \otimes \bigotimes_{i \in I} extbf{i},$$

using the standard Iwahori subgroups for each factor.

Difficulties

Let *T* be the maximal torus of *G* defined from the chosen symplectic basis. Two Borel subgroups $B^{\rightarrow} \supset T \subset B^{\leftarrow}$:

 B^{\rightarrow} -simple roots = $\epsilon_1 - \epsilon_2, \dots, 2\epsilon_n$, B^{\leftarrow} -simple roots = $2\epsilon_1, \dots, \epsilon_n - \epsilon_{n-1}$.

- Take parabolic subgroups P = MU with $P \supset B^{\leftarrow}$ and $M \supset T$.
- Define Iwahori subgroups and the τ[±]_i using B[→]-simple roots.
 Only in this way could τ^{M,±}_i be "aligned" with τ[±]_i.
- Caution: (\tilde{I}, τ_{o}) is **not a cover** of $(\tilde{I} \cap \tilde{M}, \tau_{o}^{\tilde{M}})$ if p = 2; same for $(\tilde{J}, \tau_{1}^{-})$.
 - We have to compare H_{ψ}^{\pm} and $H_{\psi}^{\tilde{M},\pm}$.
 - Tools from Bushnell–Kutzko are not directly available here.

Coinvariants

Let P = MU be parabolic with $P \supset B^{\leftarrow}$ and $M \supset T$. Fact: (read Bruhat–Tits!)

```
Iwahori decomposition I = I_U I_M I_{U^-}
```

holds with $I_M := I \cap M(F)$ (still an Iwahori subgroup), etc.

Definition of coinvariants

For every \tilde{I} -module τ , let $\tau_U := \tau / \sum_{u \in I_U} \operatorname{im}(\tau(u) - \operatorname{id})$, as an $\widetilde{I_M}$ -module.

Proposition

There is an explicit isomorphism of $\widetilde{I_M}$ -modules $\tau_{o,U} \simeq \tau_o^{\tilde{M}}$. Ditto for τ_1^- provided that dim $W^{\flat} \ge 1$.

The proof is similar to the computation of coinvariants of ω_{ψ}^{\pm} .

Let $r_{\tilde{M}}$ be the normalized Jacquet functor from \tilde{G} to \tilde{M} . It is the functor of *U*-coinvariants twisted by $\delta_p^{-1/2}$.

For $\tau\in\{\tau_o,\tau_1^-\}$ and a smooth $\tilde{G}\text{-representation }\pi,$ there is a functorial linear map

$$\mathbf{q}: \mathbf{M}_{\tau}(\pi) \to \mathbf{M}_{\tau^{\tilde{M}}}(r_{\tilde{M}}(\pi)).$$

Define a homomorphism t_{nor} of Hilbert \mathbb{C} -algebras with involution

$$H^{\tilde{M},\pm}_{\psi} \xrightarrow{\mathrm{TW}} H^{M^{\pm}} \xrightarrow{t^{\pm}_{\mathrm{nor}}} H^{\pm} \xrightarrow{\mathrm{TW}^{-1}} H^{\pm}_{\psi},$$

- $H^{M^{\pm}}$ are the counterparts of $H^{\tilde{M},\pm}_{\psi}$;
- TW means the Takeda–Wood isomorphism for \tilde{M} and \tilde{G} , identity on GL-factors of \tilde{M} ;
- t_{nor}^{\pm} is from Bushnell–Kutzko (involving $\delta_{p\pm}^{1/2}$).

Compatibility

Let $\tau \in \{\tau_{\text{o}}, \tau_{1}^{-}\}.$ Our first goal is the following

Theorem

The linear map $\mathbf{q} : \mathbf{M}_{\tau}(\pi) \to \mathbf{M}_{\tau^{\tilde{M}}}(r_{\tilde{M}}(\pi))$ is bijective, equivariant with respect to $t_{\text{nor}} : H_{\Psi}^{\tilde{M},\pm} \to H_{\Psi}^{\pm}$.

- The counterpart for Iwahori–Hecke algebras is in Bushnell–Kutzko.
- Bijectivity follows easily from the work of Takeda–Wood. The point is to show equivariance.
- The assertion is that t_{nor} mirrors normalized Jacquet functor on the level of Hecke modules.
- By adjunction, ${\rm Hom}_{H^{\tilde{M},\pm}_{\psi}}(H^{\pm}_{\psi},\cdot)$ then mirrors normalized parabolic induction.

Sketch of the proof

- In the setting of Iwahori–Hecke algebras for linear groups, the proof goes by "aligning" *M*-supported and *P*-positive elements in the Hecke algebras via an avatar of **q**.
- Based on results from Takeda–Wood, we can obtain similar partial results for metaplectic groups (involving $\delta_p^{1/2}$).
- Must compare the recipe above with t_{nor} .

Strategy

Determine the constants of proportionality by computing the Hecke modules attached to ω_{ψ}^{\pm} and to its Jacquet modules, plus routine manipulations.

- $\omega_{\psi}^{\pm} \leftrightarrow$ the trivial H_{ψ}^{\pm} -module;
- the Jacquet modules of $\omega_\psi^\pm :$ well-known.

Unramified principal series

Consider $T \subset B^{\leftarrow}$. Split \tilde{T} using Schrödinger's model in the 8-fold covering. In this way, characters of T(F) and \tilde{T} are identified. Same for subtori of T.

- $I(\chi) := \operatorname{Ind}_{\tilde{B}^{\leftarrow}}^{\tilde{G}}(\chi \otimes \delta_{B^{\leftarrow}}^{1/2})$, where χ : unramified character of T(F).
- $J(\chi) := \operatorname{Ind}_{\tilde{P}}^{\tilde{G}}((\omega_{\psi}^{\flat,-} \boxtimes \chi) \otimes \delta_{P}^{1/2})$, where $P = M_{P}U_{P} \supset B^{\leftarrow}$ with

 $M_P = \operatorname{Sp}(2) \times \operatorname{GL}(1)^{n-1}$,

 ω^{\flat}_{ψ} :Weil representation of Sp(2),

 χ :unramified character of GL(1, *F*)^{*n*-1}.

 $\mathbf{M}_{\tau_{o}}(I(\chi)) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{C}[X_{*}(T)]}(H^{+}_{\psi},\chi).$

It maps $f : \tau_0 \to I(\chi)$ to the homomorphism $h \mapsto (hf)(\phi)(\mathfrak{1}_{\tilde{G}})$ where $\phi \in V_{\tau_0} = S(\bigoplus_j \mathfrak{o}/2\mathfrak{o}f_j)$ satisfies $\phi(\mathfrak{o}, \ldots, \mathfrak{o}) = \mathfrak{1}$.

There is a similar description of $\mathbf{M}_{\tau_1^-}(J(\chi))$.

Irreducibles in G⁺_ψ (resp. G⁻_ψ) are precisely the subquotients of *I*(χ) (resp. *J*(χ)). The case for G[±] is well-known.

INTERTWINING OPERATORS

- The inducing characters $\boldsymbol{\chi}$ from both sides can be matched.
- Having known that TW respects normalized parabolic induction, one should ask:

Do the standard intertwining operators match?

• Denote by *U* the unipotent radical of B^{\leftarrow} or *P*.

$$A(w, \chi) : I(\chi) \to I(w\chi), \quad w \in \text{type } B_n \text{ Weyl group},$$

 $J(\chi) \to J(w\chi), \quad w \in \text{type } B_{n-1} \text{ Weyl group}.$

They are defined by $\int_{U^- \cap U^w \setminus U^w(F)}$ + rational continuation.

Setting The types Takeda–Wood isomorphism Jacquet functor and induction **Intertwining operators** Prospects 0000 0000 000000 00 00000 0000000 00

In contrast with the case of connected reductive groups, $A(w, \chi)$ requires sensible choice of representatives $\dot{w} \in \tilde{G}$.

• Choose representatives in \tilde{G} for each simple (with respect to B^{\leftarrow}) reflection s_i , with corresponding root α_i , as

$$\dot{w}_i := x_{\alpha_i}(1) x_{-\alpha_i}(-1) x_{\alpha_i}(1)$$

where $x_{\alpha_i}: F \to U_{\alpha_i}(F) \subset G(F)$ lifts canonically to \tilde{G}

• The representative of the long reflection is then rescaled to act as Fourier transform via $\omega_\psi.$

Proposition (Gan-L., 2018)

These representatives satisfy the braid relation. We can thus define $\dot{w} \in \tilde{G}$ for general w, using any reduced expression.

Spherical projectors

Recall the maximal compact open subgroups $K_i \subset G(F)$ for i = 0, ..., n. Define the idempotents

$$\begin{aligned} H_{\Psi}^{+} \ni e_{\Psi}^{+}(x) &:= \begin{cases} \frac{1}{\operatorname{vol}(\tilde{K}_{0})}\check{\tau}_{0}(x), & x \in \tilde{K}_{0} \\ 0, & x \notin \tilde{K}_{0}. \end{cases} \\ H_{\Psi}^{-} \ni e_{\Psi}^{-}(x) &:= \begin{cases} \frac{1}{\operatorname{vol}(\tilde{K}_{1})}\check{\tau}_{1}^{-}(x), & x \in \tilde{K}_{1}. \\ 0, & x \notin \tilde{K}_{1}. \end{cases} \end{aligned}$$

Lemma

They match the spherical idempotents e^{\pm} in the Iwahori–Hecke algebras H^{\pm} under TW.

As before, we use properties of ω_{ψ}^{\pm} to check this.

Multiplicity-one results:

Lemma

For all χ , the space $e_{\psi}^+ \mathbf{M}_{\tau_o}(I(\chi))$ is 1-dimensional with generator

$$\sigma^+_{\psi,\chi}: \varphi \mapsto [k \mapsto k \varphi(o, \dots, o)], \quad \varphi \in V_{\tau_o}, \ k \in \tilde{K}_o.$$

Lemma

For all χ , the space $e_{\psi}^-M_{\tau_1^-}(J(\chi))$ is 1-dimensional with generator

$$\sigma^{-}_{\psi,\chi}: \varphi \mapsto [k \mapsto k \varphi(\cdot, 0, \dots, 0)], \quad \varphi \in \mathbb{V}_{\tau_{1}^{-}}, \ k \in \tilde{K}_{1}.$$

Observe that $e_{\psi}^{+}\mathbf{M}_{\tau_{o}}(\cdot) = \operatorname{Hom}_{\tilde{K}_{o}}(\tau_{o}, \cdot)$ (same for e_{ψ}^{-} ...).

The proof of Lemmas makes use of the computation of coinvariants and Frobenius reciprocity.

Identity of intertwining operators

Suppose χ is an unramified character.

- Let I⁺(χ) (resp. I⁻(χ)) denote the principal series of G⁺ (resp. G⁻) induced from χ. Their spherical parts: Cσ[±]_χ.
- On the level of Hecke modules, they can be identified with M_{τ₀}(I(χ)) and M_{τ₁}⁻(J(χ)) via TW.

Question (recalled)

Do the standard intertwining operators $A(w, \chi)$ match up to an explicit constant? (depends on measures of unipotent radicals)

Strategy

A priori, they differ by a rational function in χ . The function can be determined by comparing the images of $\sigma_{\psi,\chi}^{\pm}$ and σ_{χ}^{\pm} .

A vector-valued Gindikin–Karpelevich formula for \tilde{G}

Let *w* be a Weyl group element (type B_n if +, type B_{n-1} if -).

Theorem

As rational functions in χ , we have

$$\frac{A(w,\chi)\sigma_{\psi,\chi}^{\pm}}{\sigma_{\psi,w\chi}^{\pm}} = |2|_{F}^{d(w)/2} \frac{A^{G^{\pm}}(w,\chi)\sigma_{\chi}^{\pm}}{\sigma_{w\chi}^{\pm}}$$

where d(w) is the number of long roots flipped by w. (Measures: to be specified)

Corollary

Under the isomorphism TW, $A(w, \chi)$ matches $|2|_F^{d(w)/2} A^{G^{\pm}}(w, \chi)$.

Reduction

In the + case, the multiplicativity of $A(w, \chi)$ reduces the problem to rank 1.

- $G = Sp(2) \simeq SL(2)$,
- $G^+ \simeq \mathrm{PGL}(2)$,
- w represented by $\begin{pmatrix} & 1 \end{pmatrix}$,
- χ : unramified character of F^{\times} ,
- $z := \chi(\varpi)$, |z| < 1 (i.e. in the range of convergence).

Reason: Every reflection using short roots occurs in some copy of GL shared by G and G^{\pm} .

We are led to study an explicit *p*-adic integral over $\begin{pmatrix} 1 \\ t & 1 \end{pmatrix}$ with $|t| \ge 1$. Measure: vol $(\mathfrak{o}) = 1$.

End of the proof of Gindikin–Karpelevich formula

RHS of the Theorem is evaluated by the usual GK formula for PGL(2):

$$A^{G^+}(w,\chi)\sigma_{\chi}^+ = \frac{1-q^{-1}z}{1-z}\sigma_{w\chi}^+.$$

We are ultimately led to the technical calculation

$$\int_{\mathfrak{o}^{\times}} \gamma_{\psi}(2\varpi^{-k}a) \, \mathrm{d}a = \begin{cases} (1-q^{-1})|2|_{F}^{1/2}, & k : \text{even,} \\ 0, & k : \text{odd} \end{cases}$$

where we put the Haar measure on F with vol(o) = 1, and γ_{ψ} is the Weil index:

$$\gamma_{\psi}(b) = \mathrm{PV} \int_{F} \psi\left(\frac{bx^2}{2}\right) \,\mathrm{d}_{\mathrm{selfdual}} x.$$

Remark. There exists a less computational approach via μ -functions.

About the – case

In the - case, we are reduced to the rank 2 case.

- Explicit computations are no longer amenable in $\widetilde{Sp}(4)$.
- Fortunately, we can avoid (most) *p*-adic integrals by using the matching of Harish-Chandra μ-functions by Takeda–Wood.
- However, the choice of Haar measures is different in this case.

Prospects

The applications below are most interesting when *F* is dyadic.

- Reducibility of normalized parabolic induction is preserved by TW. This implies that TW preserves tempered L-parameters, without using any Θ-lift.
- 2. Matching of standard intertwining operators from arbitrary $P \supset B^{\leftarrow}$ reduce to the minimal case we addressed.
- 3. TW preserves Aubert involution (as a functor).

There are also potential applications to Arthur's *local intertwining* relations for \tilde{G} . It serves as the original impetus of this work.

Cf. the Chapter 7 of

J. Arthur, *The endoscopic classification of representations*, AMS. Coll. 61 (2013).

Thanks for your attention